Giải bài tập Toán lớp 7 Bài tập cuối chương 7
Giải Toán 7 trang 46 Tập 2
Bài 7.42 trang 46 Toán lớp 7: Một hãng taxi quy định giá cước như sau: 0,5 km đầu tiên giá 8 000 đồng; tiếp theo cứ mỗi kilomet giá 11 000 đồng. Giả sử một người thuê xe đi x (km)
a) Chứng tỏ rằng biểu thức biểu thị số tiền mà người đó phải trả là một đa thức. Tìm bậc, hệ số cao nhất và hệ số tự do của đa thức đó.
b) Giá trị của đa thức tại x = 9 nói lên điều gì?
Phương pháp giải:
a) Tìm đa thức biểu thị số tiền mà người đó phải trả:
T = số tiền đi 0,5 km đầu tiên + số tiền đi x – 0,5 km tiếp theo.
+ Bậc của đa thức là bậc của hạng tử có bậc cao nhất
+ Hệ số cao nhất là hệ số của hạng tử có bậc cao nhất
+ Hệ số tự do là hệ số của hạng tử bậc 0.
b) Thay x = 9 vào đa thức, tìm giá trị của đa thức
Lời giải:
a) 0,5 km, người đó phải trả: 8 000 (đồng)
Quãng đường còn lại người đó phải đi là: x – 0,5 (km)
Trong x – 0,5 km đó, người đó phải trả: (x – 0,5). 11 000 ( đồng)
Đa thức biểu thị số tiền mà người đó phải trả là:
T(x) = 8 000 + (x – 0,5). 11 000
= 8 000 + x . 11 000 – 0,5 . 11 000
= 8 000 + 11 000 . x – 5 500
= 11 000.x + 2 500
Bậc của đa thức là: 1
Hệ số cao nhất: 11 000
Hệ số tự do: 2 500
b) Thay x = 9 vào đa thức T(x), ta được:
T(9) = 11 000 . 9 + 2 500 = 101 500
Giá trị này nói lên số tiền mà người đó phải trả khi đi 9 km là 101 500 đồng
Bài 7.43 trang 46 Toán lớp 7: Cho đa thức bậc hai F(x) = ax2 + bx + c, trong đó, a,b và c là những số với a 0
a) Cho biết a + b + c = 0. Giải thích tại sao x = 1 là một nghiệm của F(x)
b) Áp dụng, hãy tìm một nghiệm của đa thức bậc hai 2x2 – 5x + 3
Phương pháp giải:
Giá trị x = m là 1 nghiệm của đa thức P(x) khi P(m) = 0
Lời giải:
a) Thay x = 1 vào đa thức F(x), ta có:
F(1) = a.12 + b.1 + c = a+ b + c
Mà a + b + c = 0
Do đó, F(1) = 0. Như vậy x = 1 là một nghiệm của F(x)
b) Ta có: Đa thức 2x2 – 5x + 3 có a = 2 ; b = -5; c = 3 nên a + b + c = 2 + (-5) + 3 = 0
Do đó, đa thức có 1 nghiệm là x = 1
Bài 7.44 trang 46 Toán lớp 7: Cho đa thức A = x4 + x3 – 2x – 2
a) Tìm đa thức B sao cho A + B = x3 + 3x + 1
b) Tìm đa thức C sao cho A – C = x5
c) Tìm đa thức D biết rằng D = (2x3 – 3) . A
d) Tìm đa thức P sao cho A = (x+1) . P
e) Có hay không một đa thức Q sao cho A = (x2 + 1) . Q?
Phương pháp giải:
* Cách cộng (trừ) 2 đa thức:
Cách 1: Bỏ dấu ngoặc rồi nhóm các hạng tử cùng bậc.
Cách 2: Đặt tính cộng (trừ) sao cho các hạng tử cùng bậc đặt thẳng cột với nhau rồi cộng ( trừ) theo từng cột.
* Cách nhân 2 đa thức:
Cách 1: Muốn nhân một đa thức với một đa thức, ta nhân mỗi hạng tử của đa thức này với từng hạng tử của đa thức kia rồi cộng các tích với nhau
Cách 2: Đặt tính nhân:
+ Nhân lần lượt mỗi hạng tử ở dòng dưới với đa thức ở dòng trên và viết kết quả trong một dòng riêng.
+ Viết các dòng sao cho các hạng tử cùng bậc thẳng cột với nhau để thực hiện phép cộng theo cột.
* Muốn chia đa thức A cho đa thức B, ta làm như sau:
Bước 1: Đặt tính chia tương tự như chia hai số tự nhiên. Lấy hạng tử bậc cao nhất của A chia cho hạng tử bậc cao nhất của B.
Bước 2: Lấy A trừ đi tích của B với thương mới thu được ở bước 1
Bước 3: Lấy hạng tử bậc cao nhất của dư thứ nhất chia cho hạng tử bậc cao nhất của B
Bước 4: Lấy dư thứ nhất trừ đi tích B với thương vừa thu được ở bước 3
Bước 5: Làm tương tự như trên
Đến khi dư cuối cùng có bậc nhỏ hơn bậc của B thì quá trình chia kết thúc.
Lời giải:
a) Ta có:
B = (A + B) – A
= (x3 + 3x + 1) – (x4 + x3 – 2x – 2)
= x3 + 3x + 1 – x4 – x3 + 2x + 2
= – x4 + (x3 – x3) + (3x + 2x) + (1 + 2)
= – x4 + 5x + 3
b) C = (A – C) – A
= x5 – (x4 + x3 – 2x – 2)
= x5 – x4 – x3 + 2x + 2)
c) D = (2x3 – 3) . A
= (2x3 – 3) . (x4 + x3 – 2x – 2)
= 2x3 . (x4 + x3 – 2x – 2) + (-3) .(x4 + x3 – 2x – 2)
= 2x3 . x4 + 2x3 . x3 + 2x3 . (-2x) + 2x3 . (-2) + (-3). x4 + (-3) . x3 + (-3). (-2x) + (-3). (-2)
= 2x7 + 2x6 – 4x4 – 4x3 – 3x4 – 3x3 + 6x + 6
= 2x7 + 2x6 + (-4x4 – 3x4) + (-4x3 – 3x3) + 6x + 6
= 2x7 + 2x6 – 7x4 – 7x3 + 6x + 6
d) P = A : (x+1) = (x4 + x3 – 2x – 2) : (x + 1)
Vậy P = x3 – 2
e) Q = A : (x2 + 1)
Nếu A chia cho đa thức x2 + 1 không dư thì có một đa thức Q thỏa mãn
Ta thực hiện phép chia (x4 + x3 – 2x – 2) : (x2 + 1)
Do phép chia có dư nên không tồn tại đa thức Q thỏa mãn
Bài 7.45 trang 46 Toán lớp 7: Cho đa thức P(x). Giải thích tại sao nếu có đa thức Q(x) sao cho P(x) = (x – 3) . Q(x) (tức là P(x) chia hết cho x – 3) thì x = 3 là một nghiệm của P(x)
Phương pháp giải:
Nghiệm của đa thức biến x là giá trị của x mà tại đó, đa thức có giá trị bằng 0.
Lời giải:
Vì tại x = 3 thì P(x) = (3 – 3) . Q(x) = 0. Q(x) = 0 nên x = 3 là một nghiệm của đa thức P(x)
Bài 7.46 trang 46 Toán lớp 7: Hai bạn Tròn và Vuông tranh luận với nhau như sau
Hãy cho biết ý kiến của em và nêu một ví dụ minh họa.
Phương pháp giải:
Tổng của các đa thức là đa thức có bậc không lớn hơn bậc của các đa thức thành phần
Lời giải:
Tròn đúng, Vuông sai vì tổng của các đa thức là một đa thức có bậc không lớn hơn bậc của các đa thức thành phần
Đa thức M(x) = x3 + 1 có thể viết được thành tổng của hai đa thức bậc 4 có hệ số cao nhất là 2 số đối nhau.
Ví dụ:
x3 + 1 = (x4 + 1) + (-x4 + x3)
Xem thêm các bài giải SGK Toán lớp 7 Kết nối tri thức hay, chi tiết khác:
Luyện tập chung trang 44
Bài 29: Làm quen với biến cố
Bài 30: Làm quen với xác suất của biến cố
Luyện tập chung trang 56