Giải bài tập Toán lớp 7 Bài 25: Đa thức một biến
Giải Toán 7 trang 25 Tập 2
1. Đơn thức một biến
Câu hỏi trang 25 Toán lớp 7: Cho biết hệ số và bậc của mỗi đơn thức sau
a) 2.x6; b) c) -8; d) 32x
Phương pháp giải:
Đơn thức có dạng tích của một số thực với một lũy thừa của biến.
Số thực gọi là hệ số
Số mũ của lũy thừa của biến gọi là bậc của đơn thức
Lời giải:
a) Hệ số: 2
Bậc: 6
b) Hệ số:
Bậc: 2
c) Hệ số: -8
Bậc: 0
d) Hệ số: 9 ( vì 32 = 9)
Bậc: 1
Chú ý: Đơn thức chỉ gồm số thực khác 0 có bậc là 0
Giải Toán 7 trang 26 Tập 2
Câu hỏi trang 26 Toán lớp 7: Khi nhân một đơn thức bậc 3 với một đơn thức bậc 2, ta được đơn thức bậc mấy?
Phương pháp giải:
Muốn nhân 2 đơn thức, ta nhân hai hệ số với nhau và nhân hai lũy thừa của biến với nhau
Lời giải:
Giả sử hai đơn thức đã cho có biến x
Đơn thức bậc 3 có dạng: a.x3
Đơn thức bậc 2 có dạng: b.x2
Nhân 2 đơn thức trên, ta được đơn thức a.x3.b.x2 = (a.b).(x3.x2) = (a.b).x3+2= (a.b). x5
Vậy ta thu được đơn thức bậc 5.
Luyện tập 1 trang 26 Toán lớp 7: Tính:
Phương pháp giải:
+ Muốn cộng (hay trừ) hai đơn thức cùng bậc, ta cộng (hay trừ) các hệ số với nhau, giữ nguyên lũy thừa của biến.
+ Muốn nhân 2 đơn thức, ta nhân hai hệ số với nhau và nhân hai lũy thừa của biến với nhau
Lời giải:
2. Khái niệm đa thức một biến
Câu hỏi trang 26 Toán lớp 7: Mỗi số thực có phải một đa thức không? Tại sao?
Phương pháp giải:
Một đơn thức cũng là một đa thức
Lời giải:
Vì một số thực là một đơn thức. Mà 1 đơn thức cũng là một đa thức nên mỗi số thực cũng là một đa thức
Luyện tập 2 trang 26 Toán lớp 7: Hãy liệt kê các hạng tử của đa thức
Phương pháp giải:
Đa thức là tổng của các đơn thức.
Mỗi đơn thức trong tổng gọi là một hạng tử của đa thức
Lời giải:
Các hạng tử của B là: 2x4; -3x2; x ; 1
Giải Toán 7 trang 27 Tập 2
3. Đa thức một biến thu gọn
Luyện tập 3 trang 27 Toán lớp 7: Thu gọn đa thức:
Phương pháp giải:
Cộng, trừ các đơn thức cùng bậc để thu được đa thức thu gọn không chứa hai đơn thức nào cùng bậc
Lời giải:
4. Sắp xếp đa thức một biến
Luyện tập 4 trang 27 Toán lớp 7: Thu gọn (nếu cần) và sắp xếp mỗi đa thức sau theo lũy thừa giảm dần của biến
Phương pháp giải:
Bước 1: Đưa đa thức về dạng thu gọn
Bước 2: Sắp xếp các hạng tử của đa thức theo lũy thừa giảm dần của biến
Lời giải:
Giải Toán 7 trang 28 Tập 2
5. Bậc và các hệ số của một đa thức
HĐ 1 trang 28 Toán lớp 7: Xét đa thức . Đó là một đa thức thu gọn. Hãy quan sát các hạng tử (các đơn thức) của đa thức P và trả lời câu hỏi sau: Trong P, bậc của hạng tử 5×2 là 2 (số mũ của x2). Hãy xác định bậc của các hạng tử trong P.
Phương pháp giải:
Bậc của hạng tử là số mũ của lũy thừa của biến
Lời giải:
Bậc của hạng tử -3x4 là 4 ( số mũ của x4)
Bậc của hạng tử -2x là 1 ( số mũ của x)
Bậc của 1 là 0
HĐ 2 trang 28 Toán lớp 7: Xét đa thức . Đó là một đa thức thu gọn. Hãy quan sát các hạng tử ( các đơn thức) của đa thức P và trả lời câu hỏi sau: Trong P, hạng tử nào có bậc cao nhất? Tìm hệ số và bậc của hạng tử đó.
Phương pháp giải:
Tìm hạng tử có lũy thừa của biến có bậc cao nhất
+ Hệ số của hạng tử là số thực trong đơn thức đó
+ Bậc của hạng tử là số mũ của lũy thừa của biến
Lời giải:
Trong P, hạng tử -3x4 có bậc cao nhất. Hạng tử này có:
+ Hệ số: -3
+ Bậc: 4
HĐ 3 trang 28 Toán lớp 7: Xét đa thức . Đó là một đa thức thu gọn. Hãy quan sát các hạng tử ( các đơn thức) của đa thức P và trả lời câu hỏi sau: Trong P, hạng tử nào có bậc bằng 0?
Phương pháp giải:
+ Bậc của hạng tử là số mũ của lũy thừa của biến.
Hạng tử chỉ gồm số thực khác 0 có bậc là 0
Lời giải:
Trong P, hạng tử 1 có bậc bằng 0.
Câu hỏi trang 28 Toán lớp 7: Một số khác 0 cũng là một đa thức. Vậy bậc của nó bằng bao nhiêu?
Phương pháp giải:
Một số thực được xem là một đơn thức có bậc là 0
Mỗi đơn thức cũng là 1 đa thức
Trả lời:
Bậc của một số khác 0 là 0.
Luyện tập 5 trang 28 Toán lớp 7: Xác định bậc, hệ số cao nhất và hệ số tự do của mỗi đa thức sau
a) 5x2-2x+1-3x4;
b) 1,5x2-3,4x4+0,5x2-1.
Phương pháp giải:
Bước 1: Thu gọn đa thức
Bước 2: Xác định bậc, hệ số cao nhất và hệ số tự do của đa thức
+ Bậc của đa thức là bậc của hạng tử có bậc cao nhất
+ Hệ số cao nhất là hệ số của hạng tử có bậc cao nhất
+ Hệ số tự do là hệ số của hạng tử bậc 0.
Lời giải:
a) 5x2-2x+1-3x4 = -3x4 + 5x2 – 2x + 1
+ Bậc của đa thức là: 4
+ Hệ số cao nhất là: -3
+ Hệ số tự do là: 1
b) 1,5x2-3,4x4+0,5x2-1 = -3,4x4 + (1,5x2 + 0,5x2) -1 = -3,4x4 + 2x2 -1
+ Bậc của đa thức là: 4
+ Hệ số cao nhất là: -3,4
+ Hệ số tự do là: -1
Giải Toán 7 trang 29 Tập 2
6. Nghiệm của đa thức một biến
HĐ 4 trang 29 Toán lớp 7: Xét đa thức G(x) = x2 – 4. Giá trị của biểu thức G(x) tại x =3 còn gọi là giá trị của đa thức G(x) tại x =3 và được kí hiệu là G(3). Như vậy, ta có: G(3) = 32 – 4 = 5. Tính các giá trị G(-2); G(1); G(0); G(1); G(2).
Phương pháp giải:
Thay từng giá trị của x vào đa thức x2 – 4
Lời giải:
G(-2) = (-2)2 – 4 = 4 – 4 = 0;
G(1) = 12 – 4 = 1 – 4 = -3;
G(0) = 02 – 4 = 0 – 4 = -4;
G(1) = 12 – 4 = 1- 4 = -3;
G(2) = 22 – 4 = 4 – 4 = 0
HĐ 5 trang 29 Toán lớp 7: Với giá trị nào của c thì G(x) có giá trị bằng 0?
Phương pháp giải:
Xét các giá trị x xem tại x = ? thì G(x) = 0
Lời giải:
Tại x = – 2 và x = 2 thì G(x) có giá trị bằng 0.
Luyện tập 6 trang 29 Toán lớp 7: 1. Tính giá trị của đa thức F(x) = 2x2 – 3x – 2 tại x = -1; x = 0 ; x = 1; x =2. Từ đó hãy tìm một nghiệm của đa thức F(x)
2. Tìm nghiệm của đa thức E(x) = x2 + x.
Phương pháp giải:
+ Nghiệm của đa thức là giá trị của biến làm cho đa thức có giá trị bằng 0
Chú ý: Đa thức có hệ số tự do bằng 0 thì có nghiệm x = 0
Lời giải:
1. G(-1) = 2.(-1)2 – 3. (-1) – 2 = 2.1 +3 – 2
G(0) = 2. 02 – 3 . 0 – 2 = -2
G(1) = 2.12 – 3.1 – 2 = 2 – 3 – 2 = -3
G(2) = 2.22 – 3.2 – 2 = 8 – 6 – 2 = 0
Vì G(2) = 0 nên 0 là 1 nghiệm của đa thức G(x)
2. Vì đa thức E(x) có hệ số tự do bằng 0 nên có một nghiệm là x = 0
Vận dụng trang 29 Toán lớp 7: Trở lại bài toán mở đầu, hãy thực hiện các yêu cầu sau
a) Xác định bậc, hệ số cao nhất và hệ số tự do của đa thức H(x) = -5x2 + 15x
b) Tại sao x = 0 là một nghiệm của đa thức H(x)? Kết quả đó nói lên điều gì?
c) Tính giá trị của H(x) khi x =1; x = 2 và x = 3 để tìm nghiệm khác 0 của H(x). Nghiệm ấy có ý nghĩa gì? Từ đó hãy trả lời câu hỏi của bài toán.
Phương pháp giải:
a) + Bậc của đa thức là bậc của hạng tử có bậc cao nhất
+ Hệ số cao nhất là hệ số của hạng tử có bậc cao nhất
+ Hệ số tự do là hệ số của hạng tử bậc 0.
b) Đa thức có hệ số tự do bằng 0 thì có nghiệm x = 0
c) Nghiệm của đa thức là giá trị của biến làm cho đa thức có giá trị bằng 0
Trả lời:
a) + Bậc của đa thức là: 2
+ Hệ số cao nhất là: -5
+ Hệ số tự do là: 0
b) Vì đa thức có hệ số tự do bằng 0 nên có nghiệm x = 0
Điều này nói lên: Tại thời điểm bắt đầu ném thì vật ở mặt đất.
c) H(1) = -5.12 + 15.1 = -5 + 15 = 10
H(2) = -5.22 + 15.2 = -20 + 30 = 10
H(3) = -5.32 + 15.3 = -45 + 45 = 0
Vì H(3) = 0 nên x = 3 là nghiệm của H(x)
Nghiệm này có ý nghĩa: Tại thời điểm sau khi ném vật 3 giây thì vật trở lại mặt đất.
Vậy sau 3 giây kể từ khi được ném lên, vật sẽ rơi trở lại mặt đất.
Giải Toán 7 trang 30 Tập 2
Bài tập
Bài 7.5 trang 30 Toán lớp 7: a) Tính . Tìm hệ số và bậc của đơn thức nhận được.
b) Tính . Tìm hệ số và bậc của đơn thức nhận được.
Phương pháp giải:
Bước 1: Thu gọn
a) Muốn nhân 2 đơn thức, ta nhân hai hệ số với nhau và nhân hai lũy thừa của biến với nhau
b) Muốn trừ hai đơn thức cùng bậc, ta trừ các hệ số với nhau, giữ nguyên lũy thừa của biến.
Bước 2:
Đơn thức có dạng tích của một số thực với một lũy thừa của biến thì:
Số thực gọi là hệ số
Số mũ của lũy thừa của biến gọi là bậc của đơn thức
Lời giải:
a) .
Hệ số: 2
Bậc: 5
b)
Hệ số: -2
Bậc: 3
Bài 7.6 trang 30 Toán lớp 7: Cho hai đa thức
a) Thu gọn và sắp xếp hai đa thức trên theo lũy thừa giảm của biến.
b) Tìm bậc, hệ số cao nhất và hệ số tự do của mỗi đa thức đã cho.
Phương pháp giải:
a) Bước 1: Cộng, trừ các đơn thức cùng bậc để thu được đa thức thu gọn không chứa hai đơn thức nào cùng bậc
Bước 2: Sắp xếp đa thức trên theo lũy thừa giảm của biến.
b) + Bậc của đa thức là bậc của hạng tử có bậc cao nhất
+ Hệ số cao nhất là hệ số của hạng tử có bậc cao nhất
+ Hệ số tự do là hệ số của hạng tử bậc 0.
Lời giải:
a)
b) * Đa thức A(x):
+ Bậc của đa thức là: 4
+ Hệ số cao nhất là: -7
+ Hệ số tự do là: 9
* Đa thức B(x):
+ Bậc của đa thức là: 4
+ Hệ số cao nhất là: 8
+ Hệ số tự do là: -7
Bài 7.7 trang 30 Toán lớp 7: Cho hai đa thức
a) Thu gọn và sắp xếp hai đa thức trên theo lũy thừa giảm của biến.
b) Tìm bậc, hệ số cao nhất và hệ số tự do của mỗi đa thức đã cho.
Phương pháp giải:
a) Bước 1: Cộng, trừ các đơn thức cùng bậc để thu được đa thức thu gọn không chứa hai đơn thức nào cùng bậc
Bước 2: Sắp xếp đa thức trên theo lũy thừa giảm của biến.
b) Thay từng giá trị x vào P(x), Q(x) đã thu gọn và tính.
Lời giải:
a)
b) P(1) = 2.12 = 2
P(0) = 2. 02 = 0
Q(-1) = 8.(-1)2 – 2.(-1) +5 = 8 +2 +5 =15
Q(0) = 8.02 – 2.0 + 5 = 5
Bài 7.8 trang 30 Toán lớp 7: Người ta dùng hai máy bơm để bơm nước vào một bể chứa nước. Máy thứ nhất bơm mỗi giờ được 22 m3 nước. Máy thứ hai bơm mỗi giờ được 16 m3 nước. Sau khi cả hai máy chạy trong x giờ, người ta tắt máy thứ nhất và để máy thứ hai chạy thêm 0,5 giờ nữa thì bể nước đầy. Hãy viết đa thức ( biến x) biểu thị dung tích bể (m3). Biết rằng trước khi bơm, trong bể có 1,5 m3 nước. Tìm hệ số cao nhất và hệ số tự do của đa thức đó.
Phương pháp giải:
Bước 1: Viết đa thức biểu thị dung tích bể = Lượng nước 2 máy bơm trong x giờ + lượng nước máy 2 bơm trong 0,5 giờ + Lượng nước trong bể có sẵn
Bước 2: Thu gọn đa thức
+ Hệ số cao nhất là hệ số của hạng tử có bậc cao nhất
+ Hệ số tự do là hệ số của hạng tử bậc 0.
Lời giải:
Đa thức V(x) = 22.x + 16.x + 0,5.16 + 1,5 = (22+16).x + 8 + 1,5 = 38.x + 9,5
Hệ số cao nhất: 38
Hệ số tự do: 9,5
Bài 7.9 trang 30 Toán lớp 7: Viết đa thức F(x) thỏa mãn đồng thời các điều kiện sau
- Bậc của F(x) bằng 3
- Hệ số của x2 bằng hệ số của x và bằng 2
- Hệ số cao nhất của F(x) bằng -6 và hệ số tự do bằng 3.
Phương pháp giải:
Viết đa thức thỏa mãn yêu cầu:
+ Bậc của đa thức là bậc của hạng tử có bậc cao nhất
+ Hệ số cao nhất là hệ số của hạng tử có bậc cao nhất
+ Hệ số tự do là hệ số của hạng tử bậc 0.
Lời giải:
F(x) = -6x3 + 2x2 + 2x + 3
Bài 7.10 trang 30 Toán lớp 7: Kiểm tra xem
a) có phải là nghiệm của đa thức P(x) = 4x + không?
b) Trong ba số 1; -1 và 2, số nào là nghiệm của đa thức Q(x) = x2 + x – 2 ?
Phương pháp giải:
a) Thay giá trị vào đa thức P(x) = 4x + để tính giá trị P(). Nếu P() = 0 thì là nghiệm của P(x)
b) Tìm Q(1); Q(-1); Q(2). Tại giá trị x nào mà Q(x) = 0 thì số đó là nghiệm của Q(x)
Lời giải:
a) Ta có: P() = 4.()+ = (-) + = 0
Vậy là nghiệm của đa thức P(x) = 4x +
b) Q(1) = 12 +1 – 2 = 0
Q(-1) = (-1)2 + (-1) – 2 = -2
Q(2) = 22 + 2 – 2 = 4
Vì Q(1) = 0 nên x = 1 là nghiệm của Q(x)
Bài 7.11 trang 30 Toán lớp 7: Mẹ cho Quỳnh 100 nghìn đồng. Quỳnh mua một bộ dụng cụ học tập có giá 37 nghìn đồng và một cuốn sách tham khảo môn Toán với giá x ( nghìn đồng).
a) Hãy tìm đa thức ( biến x) biểu thị số tiền Quỳnh còn lại ( đơn vị: nghìn đồng). Tìm bậc của đa thức đó.
b) Sau khi mua sách thì Quỳnh tiêu vừa hết số tiền mẹ cho. Hỏi giá tiền của cuốn sách là bao nhiêu?
Phương pháp giải:
Viết đa thức biểu thị số tiền còn lại = số tiền mẹ cho – số tiền đã mua
Bậc của đa thức là bậc của hạng tử có bậc cao nhất
Khi tiêu hết tiền, tức là số tiền còn lại bằng 0
Lời giải:
a) Đa thức C(x) = 100 – 37 – x = – x + 63
Bậc của đa thức là 1
b) Sau khi mua sách, ta có số tiền còn lại là 0 hay – x + 63 = 0
hay x = 63
Vậy giá tiền cuốn sách là 63 nghìn đồng
Xem thêm các bài giải SGK Toán lớp 7 Kết nối tri thức hay, chi tiết khác:
Bài 24: Biểu thức đại số
Bài 26: Phép cộng và phép trừ đa thức một biến
Luyện tập chung trang 34
Bài 27: Phép nhân đa thức một biến