Bài tập Toán lớp 7 Bài 8: Đại lượng tỉ lệ nghịch
A. Bài tập Đại lượng tỉ lệ nghịch
A.1 Bài tập tự luận
Bài 1. Một ô tô dự định đi từ A đến B trong 6 giờ. Nhưng thực tế ô tô đi với vận tốc gấp vận tốc dự định. Tính thời gian ô tô đã đi.
Hướng dẫn giải
Gọi t (h) là thời gian thực tế ô tô đã đi.
Vì vận tốc thực tế ô tô đi gấp vận tốc dự định nên tỉ lệ giữa vận tốc thực tế và vận tốc dự định là .
Mà vận tốc và thời gian ô tô đi trên quãng đường AB là hai đại lượng tỉ lệ nghịch nên
Do đó (h)
Vậy thời gian thực tế ô tô đã đi là 4,5 (h).
Bài 2. Biết 3 người làm cỏ trên một cánh đồng hết 6 giờ. Hỏi 12 người (với cùng năng suất như thế) làm cỏ trên cánh đồng đó hết bao nhiêu thời gian?
Hướng dẫn giải
Gọi x (người), y (giờ) lần lượt là số người và thời gian để số người đó hoàn thành việc làm cỏ trên cánh đồng. Khi đó ta có mỗi quan hệ giữa số người (x) và thời gian hoàn thành công việc (y) được cho bởi bảng sau:
Số người (x) |
x1 = 3 |
x2 = 12 |
Thời gian hoàn thành công việc (y) |
y1 = 6 |
y2 = ? |
Do thời gian hoàn thành công việc tỉ lệ nghịch với với số người làm việc theo hệ số tỉ lệ
a = x1. y1 = 3.6 = 18.
Suy ra 12 . y2 = 18. Vì thế y2 = 18 : 12 = 1,5.
Vậy 12 người hoàn thành công việc làm cỏ trong 1,5 giờ.
A.2 Bài tập trắc nghiệm
Câu 1. Cho x và y là hai đại lượng tỉ lệ nghịch theo hệ số tỉ lệ a. Nếu x = −3 thì y = −12. Hệ số tỉ lệ a là:
A. 4;
B. −4;
C. 36;
D. −36.
Hướng dẫn giải
Đáp án đúng là: C.
Vì x và y là hai đại lượng tỉ lệ nghịch theo hệ số tỉ lệ a nên ta có xy = a.
Khi x = −3 thì y = −12 nên (−3).(−12) = a
Do đó a = 36.
Vậy hai đại lượng x và y tỉ lệ nghịch với nhau theo hệ số tỉ lệ a = 36.
Câu 2. Một ô tô đi từ A đến B hết 4 giờ 30 phút. Hỏi ô tô đi từ A đến B hết mấy giờ nếu ô tô đi với vận tốc gấp đôi vận tốc cũ?
A. 2 giờ;
B. 2 giờ 15 phút;
C. 3 giờ;
D. 2 giờ 45 phút.
Hướng dẫn giải
Đáp án đúng là: B.
Đổi 4 giờ 30 phút = 4,5 giờ.
Gọi vận tốc cũ và vận tốc mới của ô tô lần lượt là v1 (km/h) và v2 (km/h).
Thời gian tương ứng của ô tô đi từ A đến B lần lượt là t1 (giờ) và t2 (giờ).
Mà vận tốc mới gấp đôi vận tốc cũ nên ta có v2 = 2v1.
Ta có vận tốc và thời gian của ô tô khi chuyển động trên cùng một quãng đường là hai đại lượng tỉ lệ nghịch.
Do đó ta có hay
Thay t1 = 4,5 ta có suy ra 2.t2 = 4,5.1
Nên t2 = 4,5 : 2 = 2,25 (giờ)
Đổi 2,25 giờ = 2 giờ 15 phút.
Vậy nếu đi với vận tốc gấp đôi vận tốc cũ thì ô tô đi hết 2 giờ 15 phút.
Câu 3. Chị Mai đi đổ xăng cho chiếc xe của mình thì đổ được 9 lít với số tiền định trước. Nhưng do giá xăng tăng nên chị chỉ đổ được 8 lít. Hỏi giá xăng đã tăng bao nhiêu phần trăm?
A. 112,5%;
B. 12,5%;
C. 25%;
D. 125%.
Hướng dẫn giải
Đáp án đúng là: B.
Gọi giá xăng trước khi tăng giá là x (nghìn đồng), giá xăng sau khi tăng giá là y (nghìn đồng).
Vì số tiền của chị Mai là không đổi nên giá xăng và số lít xăng mua được là hai đại lượng tỉ lệ nghịch.
Theo tính chất tỉ lệ nghịch ta có: 9x = 8y
Suy ra
Đổi
Do đó giá xăng tăng: 112,5% − 100% = 12,5%.
Vậy giá xăng tăng 12,5%.
B. Lý thuyết Đại lượng tỉ lệ nghịch
1. Khái niệm
– Nếu đại lượng y liên hệ với đại lượng x theo công thức hay xy = a (với a là một hằng số khác 0) thì ta nói y tỉ lệ nghịch với x theo hệ số tỉ lệ a.
– Nếu y tỉ lệ nghịch với x theo hệ số tỉ lệ a thì x cũng tỉ lệ nghịch với y theo hệ số tỉ lệ a. Ta nói x và y là hai đại lượng tỉ lệ nghịch với nhau.
Ví dụ: Nếu thì ta nói y tỉ lệ nghịch với x theo hệ số tỉ lệ –5. Khi đó x cũng tỉ lệ nghịch với y theo hệ số tỉ lệ –5.
2. Tính chất
Nếu hai đại lượng tỉ lệ nghịch với nhau thì:
– Tích hai giá trị tương ứng của chúng luôn không đổi (bằng hệ số tỉ lệ).
– Tỉ số hai giá trị bất kì của đại lượng này bằng nghịch đảo của tỉ lệ hai giá trị tương ứng của đại lượng kia.
Giả sử y tỉ lệ nghịch với x theo hệ số tỉ lệ a. Với mỗi giá trị x1, x2, x3, … khác 0 của x, ta có một giá trị tương ứng y1, y2, y3,… của y. Khi đó:
x1 y1 = x2 y2 = x3 y3 = …= a hay
3. Một số bài toán
Chú ý:
– Năng suất lao động và thời gian hoàn thành công việc là hai đại lượng tỉ lệ nghịch.
– Số công nhân và thời gian hoàn thành công việc là hai đại lượng tỉ lệ nghịch.
Bài toán 1: Cho biết 35 công nhân xây một ngôi nhà hết 168 ngày. Hỏi nếu chỉ có 28 công nhân xây ngôi nhà đó thì hết bao nhiêu ngày (giả sử năng suất làm việc của mỗi công nhân là như nhau).
Hướng dẫn giải
Gọi x (công nhân), y (ngày) lần lượt là số công nhân và thời gian xây xong ngôi nhà. Khi đó, mối quan hệ giữa số công nhân (x) và thời gian xây xong ngôi nhà (y) được cho bởi bảng:
Số công nhân (x) |
x1 = 35 |
x2 = 28 |
Thời gian xây xong nhà (y) |
y1 = 168 |
y2 = ? |
Ta có thời gian xây xong nhà (y) tỉ lệ nghịch với số công nhân làm việc theo hệ số tỉ lệ
a = x1 . y1 = 35 . 168 = 5 880.
Suy ra 28 . y2 = 5 880. Vì thế y2 = 5 880 : 28 = 210 (ngày)
Vậy 28 công nhân xây xong ngôi nhà trong 210 ngày.
Bài toán 2: Để tổ chức liên hoan cho gia đình, bác Ngọc dự định mua 2,9 kg thực phẩm gồm: thịt bò, thịt lợn, tôm sú. Số tiền bác Ngọc mua mỗi loại thực phẩm là như nhau. Biết giá thịt bò là 280 nghìn đồng/kg, giá thịt lợn là 160 nghìn đồng/kg và tôm sú là 320 nghìn đồng/kg. Mỗi loại thực phẩm bác Ngọc mua được là bao nhiêu kg?
Hướng dẫn giải
Gọi x (kg), y (kg), z (kg) lần lượt là số lượng thịt bò, thịt lợn, tôm sú mà bác Ngọc mua được. Khi đó: x + y + z = 2,9.
Vì số tiền mua mỗi loại thực phẩm là như nhau nên 280 . x = 160 . y = 320 . z hay 7 . x = 4 . y = 8 . z (chia đồng thời các vế cho 40).
Do đó : .
Áp dụng tính chất của dãy tỉ số bằng nhau ta có:
.
Do đó:
(kg).
(kg).
(kg).
Vậy Bác Ngọc mua 0,8 kg thịt bò, 1,4 kg thịt lợn và 0,7 kg tôm sú.