Giải SBT Toán lớp 11 Bài 29: Công thức cộng xác suất
Giải SBT Toán 11 trang 48
Bài 8.6 trang 48 SBT Toán 11 Tập 2: Trong một căn phòng có 36 người, trong đó có 25 người họ Nguyễn và 11 người họ Trần. Chọn ngẫu nhiên hai người trong phòng đó. Tính xác suất để hai người được chọn có cùng họ.
Lời giải:
Xét các biến cố sau:
A: “Cả hai người được chọn đều họ Nguyễn”;
B: “Cả hai người được chọn đều họ Trần”;
C: “Cả hai người được chọn có cùng họ”.
C là biến cố hợp của A và B.
Do A và B xung khắc nên P(C) = P(A B) = P(A) + P(B).
Ta có ; n(A) = ; n(B) = = 55.
Do đó P(A) = ; P(B) = .
Suy ra P(C) = P(A) + P(B) = .
Vậy xác suất để hai người được chọn có cùng họ là .
Bài 8.7 trang 48 SBT Toán 11 Tập 2: Trong một công ty có 40 nhân viên, trong đó có 19 người thích chơi bóng bàn, 20 người thích chơi cầu lông, 8 người không thích chơi cả cầu lông và bóng bàn. Chọn ngẫu nhiên một nhân viên trong công ty đó. Tính xác suất để người đó:
a) Thích chơi ít nhất một trong hai môn bóng bàn và cầu lông.
b) Thích chơi cầu lông và không thích chơi bóng bàn.
c) Thích chơi bóng bàn và không thích chơi cầu lông.
d) Thích chơi đúng một trong hai môn.
Lời giải:
Gọi A là biến cố: “Người đó thích chơi bóng bàn”;
B là biến cố: “Người đó thích chơi cầu lông”.
Khi đó:
Biến cố A B: “Người đó thích chơi ít nhất một trong hai môn bóng bàn và cầu lông”.
Biến cố AB: “Người đó thích chơi cả cầu lông và bóng bàn”.
Biến cố : “Người đó không thích chơi cả cầu lông và bóng bàn”.
Biến cố : “Người đó thích chơi cầu lông và không thích chơi bóng bàn”.
Biến cố : “Người đó thích chơi bóng bàn và không thích chơi cầu lông”.
Ta có P(A) = ; P(B) = ; P() = .
a) Ta cần tính P(A B).
Biến cố đối của biến cố A B là biến cố .
Do đó P(AB) = 1-P() = 1-.
Vậy xác suất để người đó thích chơi ít nhất một trong hai môn bóng bàn và cầu lông là .
b) Ta cần tính .
Từ công thức cộng xác suất suy ra
P(AB) = P(A) + P(B) – P(A B) = .
Có , suy ra P(B) = P(AB) + P() .
Do đó P() = P(B)-P(AB) = .
Vậy xác suất để người đó thích chơi cầu lông và không thích chơi bóng bàn là .
c) Ta cần tính P() .
Có A = AB, suy ra P(A) = P(AB)+P().
Do đó P() = P(A)-P(AB) = .
Vậy xác suất để người đó thích chơi bóng bàn và không thích chơi cầu lông là .
d) Gọi E là biến cố: “Người đó thích chơi đúng một trong hai môn cầu lông hay bóng bàn”.
Ta có , suy ra P(E) = P = .
Vậy xác suất để người đó thích chơi đúng một trong hai môn cầu lông hay bóng bàn là .
Giải SBT Toán 11 trang 49
Bài 8.8 trang 49 SBT Toán 11 Tập 2: Một nhóm có 50 người được phỏng vấn họ đã mua cành đào hay cây quất vào dịp tết vừa qua, trong đó 31 người mua cành đào, 12 người mua cây quất và 5 người mua cả cành đào và cây quất. Chọn ngẫu nhiên một người. Tính xác suất để người đó:
a) Mua cành đào hoặc cây quất.
b) Mua cành đào và không mua cây quất.
c) Không mua cành đào và không mua cây quất.
d) Mua cây quất và không mua cành đào.
Lời giải:
Gọi A là biến cố: “Người đó mua cành đào”, B là biến cố: “Người đó mua cây quất”.
Biến cố A B: “Người đó mua cành đào hoặc cây quất”.
Biến cố AB: “Người đó mua cả cành đào và cây quất”.
Biến cố : “Người đó mua cành đào và không mua cây quất”.
Biến cố : “Người đó không mua cành đào và không mua cây quất”.
Biến cố : “Người đó mua cây quất và không mua cành đào”.
Ta có: P(A) = ; P(B) = ; P(AB) = .
a) Ta cần tính P(A B).
Có P(A B) = P(A) + P(B) – P(AB) = .
Vậy xác suất để người đó mua cành đào hoặc cây quất là .
b) Ta cần tính P() .
Có A = AB, suy ra P(A) = P(AB)+P() .
Do đó P() = P(A) – P(AB) = .
Vậy xác suất để người đó mua cành đào và không mua cây quất là .
c) Ta cần tính P() .
Ta có biến cố đối của là biến cố A B.
Do đó P() = 1-P(AB) = 1-.
Vậy xác suất để người đó không mua cành đào và không mua cây quất là .
d) Ta cần tính P() .
Ta có B = AB, suy ra P(B) = P(AB) + P() .
Do đó P() = P(B) – P(AB) = .
Vậy xác suất để người đó mua cây quất và không mua cành đào là .
Xem thêm các bài giải SBT Toán 11 Kết nối tri thức hay, chi tiết khác:
Bài 28: Biến cố hợp, biến cố giao, biến cố độc lập
Bài 29: Công thức cộng xác suất
Bài 30: Công thức nhân xác suất cho hai biến cố độc lập
Bài tập cuối chương 8
Bài 31: Định nghĩa và ý nghĩa của đạo hàm
Bài 32: Các quy tắc tính đạo hàm