Câu hỏi:
Trong mặt phẳng tọa độ Oxy, cho điểm M(3; -5), đường thẳng d có phương trình 3x + 2y – 6 = 0 và đường tròn (C) có phương trình . Tìm ảnh của M, d, và (C) qua phép đối xứng qua trục Ox
Trả lời:
Gọi M′, d′ và (C’) theo thứ tự là ảnh của M, d và (C) qua phép đối xứng qua trục Ox . Khi đó M′ = (3;5) . Để tìm ta viết biểu thức tọa độ của phép đối xứng qua trục:Thay (1) vào phương trình của đường thẳng d ta được 3x′ − 2y′ − 6 = 0. Từ đó suy ra phương trình của d’ là 3x − 2y – 6 = 0Thay (1) vào phương trình của (C) ta được . Từ đó suy ra phương trình của (C’) là .Cũng có thể nhận xét (C) có tâm là I(1; −2), bán kính bằng 3, từ đó suy ra tâm I’ của (C’) có tọa độ (1;2) và phương trình của (C’) là
====== **** mời các bạn xem câu tiếp bên dưới **** =====
- Trong mặt phẳng Oxy cho đường thẳng d có phương trình x − 5y + 7 = 0 và đường thẳng d’ có phương trình 5x – y – 13 = 0. Tìm phép đối xứng trục biến d thành d’.
Câu hỏi:
Trong mặt phẳng Oxy cho đường thẳng d có phương trình x − 5y + 7 = 0 và đường thẳng d’ có phương trình 5x – y – 13 = 0. Tìm phép đối xứng trục biến d thành d’.
Trả lời:
Dễ thấy d và d’ không song song với nhau. Do đó trục đối xứng Δ của phép đối xứng biến d thành d’ chính là đường phân giác của góc tạo bởi d và d’. Từ đó suy ra Δ có phương trình:Từ đó tìm được hai phép đối xứng qua các trục: có phương trình: x + y – 5 = 0, có phương trình: x – y – 1 = 0.
====== **** mời các bạn xem câu tiếp bên dưới **** =====
- Tìm các trục đối xứng của hình vuông
Câu hỏi:
Tìm các trục đối xứng của hình vuông
Trả lời:
Cho hình vuông ABCD. Gọi F là phép đối xứng trục d biến hình vuông đó thành chính nó. Lí luận tương tự, ta thấy A chỉ có thể biến thành các điểm A, B, C hoặc D- Nếu A biến thành chính nó thì C chỉ có thể biến thành chính nó và B biến thành D. Từ đó suy ra F là phép đối xứng qua trục AC- Nếu A biến thành B thì d là đường trung trực của AB. Khi đó C biến thành D.Các trường hợp khác lập luận tương tự. Do đó hình vuông ABCD có bốn trục đối xứng là các đường thẳng AC, BD và các đường trung trực của AB và BC.
====== **** mời các bạn xem câu tiếp bên dưới **** =====
- Cho hai đường thẳng c, d cắt nhau và hai điểm A, B không thuộc hai đường thẳng đó. Hãy dựng điểm C trên c, điểm D trên d sao cho tứ giác ABCD là hình thang cân nhận AB là một cạnh đáy ( không cần biện luận ).
Câu hỏi:
Cho hai đường thẳng c, d cắt nhau và hai điểm A, B không thuộc hai đường thẳng đó. Hãy dựng điểm C trên c, điểm D trên d sao cho tứ giác ABCD là hình thang cân nhận AB là một cạnh đáy ( không cần biện luận ).
Trả lời:
Ta thấy rằng B, C theo thứ tự là ảnh của A, D qua phép đối xứng qua đường trung trực của cạnh AB, từ đó suy ra cách dựng:- Dựng đường trung trực Δ của đoạn ab- Dựng d’ là ảnh của d qua phép đối xứng qua trục Δ.Gọi C = d′ ∩ c.- Dựng D là ảnh của C qua phép đối xứng qua trục Δ.
====== **** mời các bạn xem câu tiếp bên dưới **** =====
- Cho đường thẳng d và hai điểm A, B không thuộc d nhưng nằm cùng phía đối với d. Tìm trên d điểm M sao cho tổng các khoảng cách từ đó đến A và B là bé nhất.
Câu hỏi:
Cho đường thẳng d và hai điểm A, B không thuộc d nhưng nằm cùng phía đối với d. Tìm trên d điểm M sao cho tổng các khoảng cách từ đó đến A và B là bé nhất.
Trả lời:
Gọi B’ là ảnh của B qua phép đối xứng qua trục d.Khi đó với mỗi điểm M thuộc dMA + MB = MA + MB′ nên MA + MB′ bé nhất ⇔ A, M, B′ thẳng hàng.Tức là M = (AB′) ∩ d.
====== **** mời các bạn xem câu tiếp bên dưới **** =====