Câu hỏi:
Tìm khoảng đồng biến, nghịch biến của các hàm số sau:
\(f\left( x \right) = \frac{1}{{ – x – 5}}\);
Trả lời:
Hướng dẫn giải
Tập xác định của hàm số là: D = ℝ \ {– 5}.
+ Xét khoảng (– ∞; – 5):
Lấy hai số x1, x2 tùy ý thuộc (– ∞; – 5) sao cho x1 < x2.
Ta có: \(f\left( {{x_1}} \right) – f\left( {{x_2}} \right) = \frac{1}{{ – {x_1} – 5}} – \frac{1}{{ – {x_2} – 5}}\)\( = \frac{{ – {x_2} – 5 – \left( { – {x_1} – 5} \right)}}{{\left( { – {x_1} – 5} \right)\left( { – {x_2} – 5} \right)}}\)\( = \frac{{{x_1} – {x_2}}}{{\left( {{x_1} + 5} \right)\left( {{x_2} + 5} \right)}}\).
Vì x1, x2 ∈ (– ∞; – 5) nên x1 + 5 < 0 và x2 + 5 < 0.
Lại có: x1 < x2 nên x1 – x2 < 0.
Do đó, f(x1) – f(x2) \( = \frac{{{x_1} – {x_2}}}{{\left( {{x_1} + 5} \right)\left( {{x_2} + 5} \right)}}\) < 0 hay f(x1) < f(x2).
Vậy hàm số đồng biến trên khoảng (– ∞; – 5). (1)
+ Xét khoảng (– 5; + ∞):
Lấy hai số x3, x4 tùy ý thuộc (– 5; + ∞) sao cho x3 < x4.
Ta có: \(f\left( {{x_3}} \right) – f\left( {{x_4}} \right) = \frac{1}{{ – {x_3} – 5}} – \frac{1}{{ – {x_4} – 5}}\)\( = \frac{{ – {x_4} – 5 – \left( { – {x_3} – 5} \right)}}{{\left( { – {x_3} – 5} \right)\left( { – {x_4} – 5} \right)}}\)\( = \frac{{{x_3} – {x_4}}}{{\left( {{x_3} + 5} \right)\left( {{x_4} + 5} \right)}}\).
Vì x3, x4 ∈ (– 5; + ∞) nên x3 + 5 > 0 và x4 + 5 > 0.
Lại có: x3 < x4 nên x3 – x4 < 0.
Do đó, f(x3) – f(x4) \( = \frac{{{x_3} – {x_4}}}{{\left( {{x_3} + 5} \right)\left( {{x_4} + 5} \right)}}\) < 0 hay f(x1) < f(x2).
Vậy hàm số đồng biến trên khoảng (– 5; + ∞). (2)
Từ (1) và (2) suy ra hàm số đã cho đồng biến trên các khoảng (– ∞; – 5) và (– 5; + ∞).
====== **** mời các bạn xem câu tiếp bên dưới **** =====
- Tập xác định của các hàm số sau:
f(x) = \(\frac{{4x – 1}}{{\sqrt {2x – 5} }}\);
Câu hỏi:
Tập xác định của các hàm số sau:
f(x) = \(\frac{{4x – 1}}{{\sqrt {2x – 5} }}\);Trả lời:
Hướng dẫn giải
Biểu thức \(\frac{{4x – 1}}{{\sqrt {2x – 5} }}\) có nghĩa khi 2x – 5 > 0 hay x > \(\frac{5}{2}\).
Vậy tập xác định của hàm số là D = \(\left( {\frac{5}{2};\,\, + \infty } \right)\).====== **** mời các bạn xem câu tiếp bên dưới **** =====
- f(x) = \(\frac{{2 – x}}{{\left( {x + 3} \right)\left( {x – 7} \right)}}\);
Câu hỏi:
f(x) = \(\frac{{2 – x}}{{\left( {x + 3} \right)\left( {x – 7} \right)}}\);
Trả lời:
Hướng dẫn giải
Biểu thức \(\frac{{2 – x}}{{\left( {x + 3} \right)\left( {x – 7} \right)}}\) có nghĩa khi (x + 3)(x – 7) ≠ 0 ⇒ x ≠ – 3 và x ≠ 7.
Vậy tập xác định của hàm số là D = ℝ \ {– 3; 7}.====== **** mời các bạn xem câu tiếp bên dưới **** =====
- f(x)={1x-3 khix≥0 1 khix
Câu hỏi:
Trả lời:
Hướng dẫn giải
Hàm số lấy giá trị bằng 1 khi x < 0 nên hàm số xác định với mọi x < 0.
Khi x ≥ 0, hàm số xác định khi và chỉ khi x – 3 ≠ 0 ⇒ x ≠ 3.
Vậy tập xác định của hàm số là D = ℝ \ {3}.====== **** mời các bạn xem câu tiếp bên dưới **** =====
- Vẽ đồ thị các hàm số sau:
\(f\left( x \right) = \left\{ \begin{array}{l}{x^2}\,\,\,\,\,\,\,\,\,khi\,\,x \le 2\\x + 2\,\,\,khi\,\,x > 2;\end{array} \right.\)
Câu hỏi:
Vẽ đồ thị các hàm số sau:
\(f\left( x \right) = \left\{ \begin{array}{l}{x^2}\,\,\,\,\,\,\,\,\,khi\,\,x \le 2\\x + 2\,\,\,khi\,\,x > 2;\end{array} \right.\)Trả lời:
Hướng dẫn giải
+ Vẽ đồ thị hàm số g(x) = x2 và giữ lại phần đồ thị ứng với x ≤ 2:
Đồ thị hàm số g(x) = x2 là một parabol có đỉnh là gốc tọa độ O, trục đối xứng là trục Oy, đồ thị có bề lõm hướng lên trên, đi qua các điểm (1; 1), (– 1; 1), (2; 4), (– 2; 4).
Ta giữ lại phần đồ thị nằm bên trái đường thẳng x = 2:
+ Vẽ đồ thị hàm số h(x) = x + 2 và giữ lại phần đồ thị ứng với x > 2.
Đồ thị hàm số h(x) = x + 2 là một đường thẳng đi qua hai điểm (0; 2) và (– 2; 0).
Ta giữ lại phần đường thẳng nằm bên phải đường thẳng x = 2.
Ta được đồ thị cần vẽ như hình sau:
====== **** mời các bạn xem câu tiếp bên dưới **** =====
- f(x) = |x + 3| – 2.
Câu hỏi:
f(x) = |x + 3| – 2.
Trả lời:
Hướng dẫn giải
Với x + 3 ≥ 0 ⇔ x ≥ – 3, ta có: |x + 3| – 2 = x + 3 – 2 = x + 1.
Với x + 3 < 0 ⇔ x < – 3, ta có: |x + 3| – 2 = – (x + 3) – 2 = – x – 3 – 2 = – x – 5.
Khi đó ta có: \(f\left( x \right) = \left\{ \begin{array}{l}x + 1\,\,\,\,\,\,\,khi\,\,x \ge – 3\\ – x – 5\,\,\,\,khi\,\,x < – 3\end{array} \right.\).
Ta vẽ đồ thị hàm số g(x) = x + 1 và giữ lại phần đồ thị ứng với x ≥ – 3: Đồ thị hàm số g(x) = x + 1 là đường thẳng đi qua hai điểm (0; 1) và (– 1; 0).
Ta vẽ đồ thị hàm số h(x) = – x – 5 và giữ lại phần đồ thị ứng với x < – 3: Đồ thị hàm số h(x) = – x – 5 là đường thẳng đi qua hai điểm (– 5; 0) và (– 3; – 2).
Ta được đồ thị của hàm số cần vẽ như hình sau:
====== **** mời các bạn xem câu tiếp bên dưới **** =====