Câu hỏi:
Chọn khẳng định đúng nhất trong các khẳng định sau:
A. Nếu đường thẳng c cắt hai đường thẳng phân biệt a, b và trong các góc tạo thành có một cặp góc so le trong bằng nhau thì hai đường thẳng song song với nhau.
B. Nếu đường thẳng c cắt hai đường thẳng phân biệt a, b và trong các góc tạo thành có một cặp góc đồng vị bằng nhau thì hai đường thẳng song song với nhau.
C. Nếu đường thẳng c cắt hai đường thẳng phân biệt a, b và trong các góc tạo thành có một cặp góc trong cùng phía bù nhau thì hai đường thẳng song song với nhau.
D. Cả ba đáp án A, B, C đều đúng.
Đáp án chính xác
Trả lời:
Hướng dẫn giải:
Đáp án đúng là: D
Nếu đường thẳng c cắt hai đường thẳng phân biệt a, b và thoả mãn một trong các điều kiện:
+ Trong các góc tạo thành có một cặp góc so le trong bằng nhau.
+ Trong các góc tạo thành có một cặp góc đồng vị bằng nhau.
+ Trong các góc tạo thành có một cặp góc trong cùng phía bù nhau.
Thì hai đường thẳng a và b song song với nhau.
====== **** mời các bạn xem câu tiếp bên dưới **** =====
- Chứng minh đường thẳng ab song song với cd trong các trường hợp sau:
Câu hỏi:
Chứng minh đường thẳng ab song song với cd trong các trường hợp sau:
Trả lời:
Hướng dẫn giải:
Ta có \(\widehat {aMN} = \widehat {MNd} = {70^o}\).
Mà \(\widehat {aMN}\) và \(\widehat {MNd}\) là hai góc ở vị trí so le trong.
Do đó ab song song với cd.====== **** mời các bạn xem câu tiếp bên dưới **** =====
- Chứng minh đường thẳng ab song song với cd trong các trường hợp sau:
Câu hỏi:
Chứng minh đường thẳng ab song song với cd trong các trường hợp sau:
Trả lời:
Hướng dẫn giải:
Ta có \(\widehat {xMa} = \widehat {MNc} = {60^o}\).
Mà \(\widehat {xMa}\) và \(\widehat {MNc}\) là hai góc ở vị trí đồng vị.
Do đó ab song song với cd.====== **** mời các bạn xem câu tiếp bên dưới **** =====
- Chứng minh đường thẳng ab song song với cd trong các trường hợp sau:
Câu hỏi:
Chứng minh đường thẳng ab song song với cd trong các trường hợp sau:
Trả lời:
Hướng dẫn giải:
Ta có \(\widehat {aMN} + \widehat {MNc} = {120^o} + {60^o} = {180^o}\).
Suy ra \(\widehat {aMN}\) và \(\widehat {MNc}\) là hai góc bù nhau.
Mà \(\widehat {aMN}\) và \(\widehat {MNc}\) là hai góc ở vị trí trong cùng phía.
Suy ra ab song song với cd.====== **** mời các bạn xem câu tiếp bên dưới **** =====
- Chứng minh đường thẳng ab song song với cd trong các trường hợp sau:
Câu hỏi:
Chứng minh đường thẳng ab song song với cd trong các trường hợp sau:
Trả lời:
Hướng dẫn giải:
Vì ab và cd là hai đường thẳng phân biệt cùng vuông góc với đường thẳng xy nên chúng song song với nhau.
====== **** mời các bạn xem câu tiếp bên dưới **** =====
- Cho hình vẽ:
Biết \(\widehat {xAa} = \widehat {yBd} = {45^o}\). Hai đường thẳng ab và cd có song song với nhau không? Vì sao?
Câu hỏi:
Cho hình vẽ:
Biết \(\widehat {xAa} = \widehat {yBd} = {45^o}\). Hai đường thẳng ab và cd có song song với nhau không? Vì sao?Trả lời:
Hướng dẫn giải:
Do \(\widehat {xAa}\) và \(\widehat {bAB}\) là hai góc đối đỉnh nên \(\widehat {xAa}\)= \(\widehat {bAB}\) = 45°.
Suy ra \(\widehat {bAB}\) = \(\widehat {dBy}\) (cùng bằng 45°).
Mà \(\widehat {bAB}\) và \(\widehat {dBy}\) là hai góc ở vị trí đồng vị.
Suy ra ab song song với cd.====== **** mời các bạn xem câu tiếp bên dưới **** =====