Câu hỏi:
Để chứng minh định lí: “Nếu hai đường thẳng phân biệt cùng vuông góc với một đường thẳng thứ ba thì chúng song song với nhau”, ta có thể sử dụng điều nào sau đây:
A. “Hai đường thẳng phân biệt cùng song song với một đường thẳng thứ ba thì chúng song song với nhau”;
B. “Nếu hai đường thẳng phân biệt cùng cắt đường thẳng thứ ba và trong các góc tạo thành có một cặp góc đồng vị bằng nhau thì chúng song song với nhau”;
Đáp án chính xác
C. “Hai góc có tổng bằng 180° thì bù với nhau”;
D. “Nếu hai đường thẳng cắt nhau và trong các góc tạo thành có một góc bằng 90° thì vuông góc với nhau”.
Trả lời:
Hướng dẫn giải:
Đáp án đúng là: B
Định lí: “Nếu hai đường thẳng phân biệt cùng vuông góc với một đường thẳng thứ ba thì chúng song song với nhau” được suy ra từ: “Nếu hai đường thẳng phân biệt cùng cắt một đường thẳng thứ ba và trong các góc tạo thành có một cặp góc đồng vị bằng nhau thì chúng song song với nhau”.
Thật vậy ta có thể chứng minh định lí như sau:
GT
a ⊥ c; b ⊥ c;
a ≠ b
KL
a // b
Chứng minh (hình vẽ dưới đây):
Ta có a ⊥ c (giả thiết) suy ra \({\widehat A_2} = {90^o}\);
b ⊥ c (giả thiết) suy ra \({\widehat B_2} = {90^o}\)
Suy \({\widehat A_2} = {\widehat B_2}\left( { = 90^\circ } \right)\)
Mà \({\widehat A_2}\) và \({\widehat B_2}\) là hai góc ở vị trí đồng vị
Suy ra a // b (dấu hiệu nhận biết)
Vậy định lí được chứng minh.
====== **** mời các bạn xem câu tiếp bên dưới **** =====
- Cho định lí: “Nếu hai đường thẳng phân biệt cùng cắt đường thẳng thứ ba và trong các góc tạo thành có một cặp góc so le trong bằng nhau thì các cặp góc đồng vị bằng nhau”.
Viết giả thiết, kết luận của định lí trên;
Câu hỏi:
Cho định lí: “Nếu hai đường thẳng phân biệt cùng cắt đường thẳng thứ ba và trong các góc tạo thành có một cặp góc so le trong bằng nhau thì các cặp góc đồng vị bằng nhau”.
Viết giả thiết, kết luận của định lí trên;Trả lời:
Hướng dẫn giải:
GT
aa’ cắt cc’ tại A; bb’ cắt cc’ tại B;
\(\widehat {aAB} = \widehat {ABb’}\)KL
\(\widehat {cAa’} = \widehat {ABb’}\)
\(\widehat {aAB} = \widehat {bBc’}\)
\(\widehat {aAc} = \widehat {bBA}\)
\(\widehat {a’AB} = \widehat {b’Bc’}\)====== **** mời các bạn xem câu tiếp bên dưới **** =====
- Cho định lí: “Nếu hai đường thẳng phân biệt cùng cắt đường thẳng thứ ba và trong các góc tạo thành có một cặp góc so le trong bằng nhau thì các cặp góc đồng vị bằng nhau”.
Vẽ hình;
Câu hỏi:
Cho định lí: “Nếu hai đường thẳng phân biệt cùng cắt đường thẳng thứ ba và trong các góc tạo thành có một cặp góc so le trong bằng nhau thì các cặp góc đồng vị bằng nhau”.
Vẽ hình;Trả lời:
Hướng dẫn giải:
====== **** mời các bạn xem câu tiếp bên dưới **** =====
- Cho định lí: “Nếu hai đường thẳng phân biệt cùng cắt đường thẳng thứ ba và trong các góc tạo thành có một cặp góc so le trong bằng nhau thì các cặp góc đồng vị bằng nhau”.
Chứng minh định lí.
Câu hỏi:
Cho định lí: “Nếu hai đường thẳng phân biệt cùng cắt đường thẳng thứ ba và trong các góc tạo thành có một cặp góc so le trong bằng nhau thì các cặp góc đồng vị bằng nhau”.
Chứng minh định lí.Trả lời:
Hướng dẫn giải:
+ Ta có \(\widehat {aAB} = \widehat {ABb’}\) (giả thiết)
Mà \(\widehat {aAB} = \widehat {cAa’}\) (hai góc đối đỉnh)
Suy ra \(\widehat {cAa’} = \widehat {ABb’}\) (vì cùng bằng \(\widehat {aAB}\)).
+ Ta có \(\widehat {aAB} = \widehat {ABb’}\)(giả thiết)
Mà \(\widehat {ABb’} = \widehat {bBc’}\) (hai góc đối đỉnh)
Suy ra \(\widehat {aAB} = \widehat {bBc’}\) (vì cùng bằng \(\widehat {ABb’}\)).
+ Ta có \(\widehat {aAc}\) + \(\widehat {BAa}\) = 180° (hai góc kề bù)
Và \(\widehat {bBA}\) + \(\widehat {ABb’}\) = 180° (hai góc kề bù)
Mà \(\widehat {aAB} = \widehat {ABb’}\)
Suy ra \(\widehat {aAc}\) = \(\widehat {bBA}\).
+ Ta có \(\widehat {a’AB}\) = \(\widehat {aAc}\) (hai góc đối đỉnh)
\(\widehat {b’Bc’}\) = \(\widehat {bBA}\) (hai góc đối đỉnh)
Mà \(\widehat {aAc}\) = \(\widehat {bBA}\)
Suy ra \(\widehat {a’AB} = \widehat {b’Bc’}\).
Vậy định lí được chứng minh.====== **** mời các bạn xem câu tiếp bên dưới **** =====
- Cho định lí: “Nếu một đường thẳng cắt hai đường thẳng song song thì hai góc trong cùng phía bù nhau”.
Viết giả thiết, kết luận của định lí trên;
Câu hỏi:
Cho định lí: “Nếu một đường thẳng cắt hai đường thẳng song song thì hai góc trong cùng phía bù nhau”.
Viết giả thiết, kết luận của định lí trên;Trả lời:
Hướng dẫn giải:
GT
aa’ cắt cc’ tại A; bb’ cắt cc’ tại B;
aa’ // bb’KL
\(\widehat {aAB} + \widehat {ABb} = 180^\circ ;\)
\(\widehat {a’AB} + \widehat {ABb’} = 180^\circ \)====== **** mời các bạn xem câu tiếp bên dưới **** =====
- Cho định lí: “Nếu một đường thẳng cắt hai đường thẳng song song thì hai góc trong cùng phía bù nhau”.
Vẽ hình cho định lí trên;
Câu hỏi:
Cho định lí: “Nếu một đường thẳng cắt hai đường thẳng song song thì hai góc trong cùng phía bù nhau”.
Vẽ hình cho định lí trên;Trả lời:
Hướng dẫn giải:
====== **** mời các bạn xem câu tiếp bên dưới **** =====