Câu hỏi:
b) Lập phương trình tham số của đường trung tuyến AM.
Trả lời:
b) Ta có M là trung điểm của BC nên toạ độ của M là: M(2; 2).
Đường thẳng AM có vectơ chỉ phương là vectơ = (1; – 2) nên phương trình tham số của đường thẳng AM là:
====== **** mời các bạn xem câu tiếp bên dưới **** =====
- Tìm các giá trị của tham số a, b, c để phương trình ax + by + c = 0 có thể biểu diễn được các đường thẳng trong hình đưới đây.
Câu hỏi:
Tìm các giá trị của tham số a, b, c để phương trình ax + by + c = 0 có thể biểu diễn được các đường thẳng trong hình đưới đây.
Trả lời:
a) Giả sử đường thẳng cần tìm có dạng y = a’x + b’
Đường thẳng đi qua điểm ; B(0; 3)
Ta có hệ
Suy ra đường thẳng có dạng y = 2x + 3 2x – y + 3 = 0
Vì vậy a = 2; b = – 1; c = 3.
b) Giả sử đường thẳng cần tìm có dạng y = a’x + b’
Đường thẳng đi qua điểm A(1; 0) ; B(0; 1)
Ta có hệ
Suy ra đường thẳng có dạng y = – x + 1 x + y – 1 = 0
Vì vậy a = 1; b = 1; c = – 1.
c) Giả sử đường thẳng cần tìm có dạng y = a’x + b’
Đường thẳng đi qua điểm A(0; 3) và song song với trục hoành nên đường thẳng có dạng y c 3 = 0
Vì vậy a = 0; b = 1; c = – 3.
d) Giả sử đường thẳng cần tìm có dạng y = a’x + b’
Đường thẳng đi qua điểm A(– 2; 0) và song song với trục Oy nên đường thẳng có dạng x + 2 = 0.
Vì vậy a = 1; b = 0; c = 2.====== **** mời các bạn xem câu tiếp bên dưới **** =====
- Lập phương trình tổng quát và phương trình tham số của đường thẳng d trong mỗi trường hợp sau:
a) d đi qua điểm M(2; 2) và có vectơ chỉ phương u→ = (4; 7);
Câu hỏi:
Lập phương trình tổng quát và phương trình tham số của đường thẳng d trong mỗi trường hợp sau:
a) d đi qua điểm M(2; 2) và có vectơ chỉ phương = (4; 7);Trả lời:
a) Đường thẳng d đi qua điểm M(2; 2) và có vectơ chỉ phương = (4; 7) nên ta có phương trình tham số của đường thẳng d là:
Đường thẳng d đi qua điểm M(2; 2) và có vectơ chỉ phương = (4; 7) nên vectơ pháp tuyến của đường thẳng d là (7; –4) phương trình tổng quát của đường thẳng d là: 7(x – 2) – 4(y – 2) = 0 7x – 4y – 6 = 0====== **** mời các bạn xem câu tiếp bên dưới **** =====
- b) d đi qua điểm N(0; 1) và có vectơ pháp tuyến là n→= (-5; 3);
Câu hỏi:
b) d đi qua điểm N(0; 1) và có vectơ pháp tuyến là = (-5; 3);
Trả lời:
b) Đường thẳng d đi qua điểm N(0; 1) và có vectơ pháp tuyến là = (– 5; 3) nên ta có phương trình tổng quát của đường thẳng d là: – 5(x – 0) + 3(y – 1) = 0 ⇔ – 5x + 3y – 3 = 0.
Đường thẳng d đi qua điểm N(0; 1) và có vectơ pháp tuyến là = (–5 ; 3) nên ta có vectơ chỉ của đường thẳng d là (3; 5) phương trình tham số của đường thẳng d là: .====== **** mời các bạn xem câu tiếp bên dưới **** =====
- c) d đi qua A(-2; -3) và có hệ số góc k = 3,
Câu hỏi:
c) d đi qua A(-2; -3) và có hệ số góc k = 3,
Trả lời:
c) Đường thẳng d đi qua A(–2; –3) và có hệ số góc k = 3 nên phương trình tổng quát của đường thẳng d là: y = 3(x + 2) – 3 ⇔ 3x – y + 3 = 0.
Khi đó vectơ pháp tuyến của đường thẳng d là suy ra vectơ chỉ phương . Vì vậy phương trình tham số của đường thẳng d là: .====== **** mời các bạn xem câu tiếp bên dưới **** =====
- d) d đi qua hai điểm P(1; 1) và Q(3; 4).
Câu hỏi:
d) d đi qua hai điểm P(1; 1) và Q(3; 4).
Trả lời:
d) Đường thẳng d đi qua hai điểm P(1; 1) và Q(3; 4) nên vectơ chỉ phương = (2; 3) và có vectơ pháp tuyến là vectơ (3; – 2).
Phương trình tham số của đường thẳng d là: .
Phương trình tổng quát của đường thẳng d là: 3(x – 1) – 2(y – 1) = 0 3x – 2y – 1 = 0.====== **** mời các bạn xem câu tiếp bên dưới **** =====