Câu hỏi:
Gieo đồng tiền hai lần. Xác suất để sau hai lần gieo thì mặt sấp xuất hiện ít nhất một lần
A. \(\frac{1}{4}\);
B. \(\frac{1}{2}\);
C. \(\frac{3}{4}\);
Đáp án chính xác
D. \(\frac{1}{3}\).
Trả lời:
Đáp án đúng là: C.
Số phần tử không gian mẫu: n(Ω) = 2.2 = 4 (vì mỗi lần gieo có 2 khả năng có thể xảy ra).
Gọi A là biến cố “xuất hiện mặt sấp ít nhất một lần” ta liệt kê các phần tử của biến cố A như sau: A = {SN; NS; SS}.
Vậy số phần tử của biến cố A là: n(A) = 3.
Xác suất của biến cố A là: \(P\left( A \right) = \frac{{n\left( A \right)}}{{n\left( \Omega \right)}} = \frac{3}{4}\).
====== **** mời các bạn xem câu tiếp bên dưới **** =====
- Một hộp có 5 viên bi đen, 4 viên bi trắng. Chọn ngẫu nhiên 2 viên bi. Xác suất 2 viên bi được chọn có đủ hai màu là
Câu hỏi:
Một hộp có 5 viên bi đen, 4 viên bi trắng. Chọn ngẫu nhiên 2 viên bi. Xác suất 2 viên bi được chọn có đủ hai màu là
A. \(\frac{5}{{324}}\);
B. \(\frac{5}{9}\);
Đáp án chính xác
C. \(\frac{2}{9}\);
D. \(\frac{1}{{18}}\).
Trả lời:
Đáp án đúng là: B
Số phần tử không gian mẫu: n(Ω) = \(C_9^2\) = 36 (vì có 9 viên bi chọn ngẫu nhiên ra 2 viên bi).
Gọi A là biến cố: “hai viên bi được chọn có đủ hai màu”.
Vì chọn ngẫu nhiên 2 viên bi có đủ hai màu nên ta chọn chọn 1 bi đen từ 5 bi đen, chọn 1 bi trắng từ 4 bi trắng.
Khi đó số phần tử của biến cố A là n(A) = \(C_5^1.C_4^1\) = 20.
Xác suất của biến cố A là: \(P\left( A \right) = \frac{{n\left( A \right)}}{{n\left( \Omega \right)}} = \frac{{20}}{{36}} = \frac{5}{9}\).====== **** mời các bạn xem câu tiếp bên dưới **** =====
- Một bình đựng 4 quả cầu xanh và 6 quả cầu trắng. Chọn ngẫu nhiên 4 quả cầu. Xác suất để được 2 quả cầu xanh và 2 quả cầu trắng là:
Câu hỏi:
Một bình đựng 4 quả cầu xanh và 6 quả cầu trắng. Chọn ngẫu nhiên 4 quả cầu. Xác suất để được 2 quả cầu xanh và 2 quả cầu trắng là:
A. \(\frac{1}{{20}}\);
B. \(\frac{3}{7}\);
Đáp án chính xác
C. \(\frac{1}{7}\);
D. \(\frac{4}{7}\).
Trả lời:
Đáp án đúng là: B
Số phần tử của không gian mẫu n(Ω) = \(C_{10}^4\) = 210.
Gọi biến cố A để lấy được hai quả cầu xanh và hai quả cầu trắng
Chọn 2 quả cầu xanh trong 4 quả cầu xanh vậy có \(C_4^2 = 6\).
Chọn 2 quả cầu trắng trong 6 quả cầu trắng vậy có \(C_6^2 = 15\).
Vậy số phần tử của biến cố A là n(A) = 6.15 = 90
Xác xuất của biến cố A là: \(P\left( A \right) = \frac{{n\left( A \right)}}{{n\left( \Omega \right)}} = \frac{{90}}{{210}} = \frac{3}{7}\).====== **** mời các bạn xem câu tiếp bên dưới **** =====
- Chọn ngẫu nhiên 6 số nguyên dương trong tập {1; 2; 3; 4; 5; 6; 7; 8; 9; 10} và sắp xếp chúng theo thứ tự tăng dần. Gọi P là xác suất để số 3 được chọn và xếp ở vị trí thứ 2. Khi đó P bằng:
Câu hỏi:
Chọn ngẫu nhiên 6 số nguyên dương trong tập {1; 2; 3; 4; 5; 6; 7; 8; 9; 10} và sắp xếp chúng theo thứ tự tăng dần. Gọi P là xác suất để số 3 được chọn và xếp ở vị trí thứ 2. Khi đó P bằng:
A. \(\frac{1}{{60}}\);
B. \(\frac{1}{6}\);
C. \(\frac{1}{3}\);
Đáp án chính xác
D. \(\frac{1}{2}\).
Trả lời:
Đáp án đúng là: C
Số phần tử của không gian mẫu n(Ω) = \(C_{10}^6\) = 210.
Gọi A là biến cố “số 3 được chọn và xếp ở vị trí thứ 2”.
Trong tập đã cho có 2 số nhỏ hơn số 3, có 7 số lớn hơn số 3.
+ Chọn một số nhỏ hơn số 3 ở vị trí đầu có: 2 cách.
+ Chọn số 3 ở vị trí thứ hai có: 1 cách.
+ Chọn 4 số lớn hơn 3 và để sắp xếp theo thứ tự tăng dần có: \(C_7^4 = 35\) cách.
Do đó số phần tử của biến cố A là n(A) = 2.1.35 = 70
Vậy xác suất của biến cố A là \(P(A) = \frac{{70}}{{210}} = \frac{1}{3}\).====== **** mời các bạn xem câu tiếp bên dưới **** =====
- Cho 100 tấm thẻ được đánh số từ 1 đến 100, chọn ngẫu nhiên 3 tấm thẻ. Xác suất để chọn được 3 tấm thẻ có tổng các số ghi trên thẻ là số chia hết cho 2 là
Câu hỏi:
Cho 100 tấm thẻ được đánh số từ 1 đến 100, chọn ngẫu nhiên 3 tấm thẻ. Xác suất để chọn được 3 tấm thẻ có tổng các số ghi trên thẻ là số chia hết cho 2 là
A. \(\frac{5}{6}\);
B. \(\frac{1}{2}\);
Đáp án chính xác
C. \(\frac{5}{7}\);
D. \(\frac{3}{4}\).
Trả lời:
Đáp án B
Số phần tử của không gian mẫu là n(Ω) = \(C_{100}^3\) = 161700. (vì chọn ngẫu nhiên 3 tấm thẻ từ 100 tấm thẻ ).
Gọi A là biến cố: “tổng các số ghi trên thẻ là số chia hết cho 2”. Ta có các trường hợp sau
Trường hợp 1, cả 3 tấm thẻ đánh số chẵn
Từ số 1 đến 100 có 50 tấm thẻ đánh số chẵn, chọn ra 3 tấm thẻ vậy số cách chọn là \(C_{50}^3\) = 19600 cách.
Trường hợp 2, chọn 2 tấm thẻ đánh số lẻ và 1 tấm thẻ đánh số chẵn.
Từ số 1 đến 100 có 50 tấm thẻ đánh số chẵn và 50 tấm thẻ đánh số lẻ, chọn ra 1 tấm tấm thẻ đánh số chẵn và 2 tấm thẻ đánh số lẻ, vậy số cách chọn là \(C_{50}^1.C_{50}^2\) = 61250.
Số phần tử của biến cố A là n(A) = 19600 + 61250 = 80850
Vậy xác suất của biến cố A là P(A) = \(\frac{{80850}}{{161700}} = \frac{1}{2}\) .====== **** mời các bạn xem câu tiếp bên dưới **** =====
- Có 30 tấm thẻ đánh số từ 1 đến 30. Chọn ngẫu nhiên ra 10 tấm thẻ. Tìm xác suất để có 5 tấm thẻ mang số lẻ và 5 tấm thẻ mang số chẵn trong đó chỉ có đúng một tấm thẻ chia hết cho 10.
Câu hỏi:
Có 30 tấm thẻ đánh số từ 1 đến 30. Chọn ngẫu nhiên ra 10 tấm thẻ. Tìm xác suất để có 5 tấm thẻ mang số lẻ và 5 tấm thẻ mang số chẵn trong đó chỉ có đúng một tấm thẻ chia hết cho 10.
A. \(\frac{{99}}{{667}}\);
B. \(\frac{{98}}{{667}}\);
C. \(\frac{{97}}{{667}}\);
D. \(\frac{{96}}{{667}}\).
Trả lời:
Đáp án đúng là: A
Số phần tử của không gian mẫu là: n(Ω) = \(C_{30}^{10} = 30045015\)(vì chọn 10 tấm thẻ trong 30 tấm thẻ).
Gọi A là biến cố lấy được 5 tấm thẻ mang số lẻ và 5 tấm thẻ mang số chẵn trong đó chỉ có đúng một tấm thẻ chia hết cho 10.
Công đoạn 1, lấy 5 tấm thẻ mang số lẻ có: \(C_{15}^5\) = 3003 (cách) (vì có 15 tấm thẻ đánh số lẻ và lấy ra 3 tấm thẻ).
Công đoạn 2, lấy 5 tấm thẻ mang số chẵn trong đó chỉ có đúng một tấm thẻ chia hết cho 10 có: \(C_3^1C_{12}^4\) = 1485 (cách) (vì có 3 tấm thẻ đánh số chia hết cho 10 và lấy ra một tấm thẻ, có 12 tấm thẻ còn lại đánh số chẵn và lấy ra 4 tấm thẻ).
Số phần tử của biến cố A là: 3003.1485 = 4459455 (cách).
Vậy xác suất của biến cố A là: P(A) = \(\frac{{4459455}}{{30045015}} = \frac{{99}}{{667}}\).====== **** mời các bạn xem câu tiếp bên dưới **** =====