Lời giải:
a) Biểu thức có nghĩa với mọi
Vậy tập xác định của hàm số này là
b) Biểu thức có nghĩa khi và chỉ khi tức là với mọi
Vậy tập xác định của hàm số này là
c) Biểu thức có nghĩa khi và chỉ khi có nghĩa, tức là khi
Vậy tập xác định của hàm số này là
Bài 2 trang 59 Toán lớp 10: Tìm điều kiện của m để mỗi hàm số sau là hàm số bậc hai:
a)
b)
c)
Phương pháp giải:
Hai số bậc hai (biến x) có dạng với và
Điều kiện: là đa thức bậc hai với hệ số thực, hệ số a khác 0.
Lời giải:
a) Để hàm số là hàm số bậc hai thì: tức là
Vây thì hàm số đã cho là hàm số bậc hai.
b) Để hàm số là hàm số bậc hai thì:
tức là
Khi đó
Vậy thì hàm số đã cho là hàm số bậc hai
Bài 3 trang 59 Toán lớp 10: Vẽ đồ thị các hàm số sau:
a)
b)
c)
d)
Lời giải:
a)
Trong mặt phẳng tọa độ Oxy, đồ thị hàm số bậc hai là một parabol (P):
+ Có đỉnh S với hoành độ:
+ Có trục đối xứng là đường thẳng (đường thẳng này đi qua đỉnh S và song song với trục Oy);
+ Bề lõm quay lên trên vì
+ Cắt trục tung tại điểm có tung độ bằng 3, tức là đồ thị đi qua điểm có tọa độ (0; 3).
Ta vẽ được đồ thị như hình dưới.
b)
Trong mặt phẳng tọa độ Oxy, đồ thị hàm số bậc hai là một parabol (P):
+ Có đỉnh S với hoành độ:
+ Có trục đối xứng là đường thẳng (đường thẳng này đi qua đỉnh S và song song với trục Oy);
+ Bề lõm quay xuống dưới vì
+ Cắt trục tung tại điểm có tung độ bằng 5, tức là đồ thị đi qua điểm có tọa độ (0; 5).
Ta vẽ được đồ thị như hình dưới.
c)
Trong mặt phẳng tọa độ Oxy, đồ thị hàm số bậc hai là một parabol (P):
+ Có đỉnh S với hoành độ:
+ Có trục đối xứng là đường thẳng (đường thẳng này đi qua đỉnh S và song song với trục Oy);
+ Bề lõm quay lên trên vì
+ Cắt trục tung tại điểm có tung độ bằng 5, tức là đồ thị đi qua điểm có tọa độ (0; 5).
Ta vẽ được đồ thị như hình dưới.
d)
Trong mặt phẳng tọa độ Oxy, đồ thị hàm số bậc hai là một parabol (P):
+ Có đỉnh S với hoành độ:
+ Có trục đối xứng là đường thẳng (đường thẳng này đi qua đỉnh S và song song với trục Oy);
+ Bề lõm quay xuống dưới vì
+ Cắt trục tung tại điểm có tung độ bằng -1, tức là đồ thị đi qua gốc tọa độ (0; -1).
Ta vẽ được đồ thị như hình dưới.
Bài 4 trang 59 Toán lớp 10: Một vận động viên chạy xe đạp trong 1 giờ 30 phút đầu với vận tốc trung bình là 42km/h. Sau đó người này nghỉ tại chỗ 15 phút và tiếp tục đạp xe 2 giờ liền với vận tốc 30 km/h.
a) Hãy biểu thị quãng đường s (tính bằng kilômét) mà người này đi được sau t phút bằng một hàm số.
b) Vẽ đồ thị biểu diễn hàm số s theo t.
Lời giải:
a) Đổi: 1 giờ 30 phút = 1,5 giờ; 15 phút = 0,25 giờ; t phút = giờ
Nếu (phút) thì quãng đường s mà người đó đi được là: (km)
Nếu (phút) thì quãng đường s mà người đó đi được là: (km)
Nếu (phút) thì quãng đường s mà người đó đi được là: (km)
Như vậy hàm số tính quãng đường s (km) sau t phút là:
b)
Với thì
Trên đoạn [0;90] ta vẽ đường thẳng
Với thì
Trên nửa khoảng (90;105] ta vẽ đường thẳng
Với (phút) thì (km)
Trên nửa khoảng (105;225] ta vẽ đường thẳng
Như vậy ta được đồ thị biểu diễn hàm số s theo t như hình trên.
Bài 5 trang 59 Toán lớp 10: Biết rằng hàm số giảm trên khoảng tăng trên khoảng và có tập giá trị là . Xác định giá trị của m và n.
Phương pháp giải:
Từ tập giá trị suy ra GTNN của hàm số bằng 9.
Lập bảng biến thiên, xác định giá trị nhỏ nhất của hàm số.
Lời giải:
Đỉnh S có tọa độ:
Vì hàm số bậc hai có nên ta có bảng biến thiên sau:
Hàm số đạt giá trị nhỏ nhất bằng
Hàm số giảm trên và tăng trên
Theo giả thiết, ta có:
Hàm số giảm trên khoảng
Tương tự hàm số tăng trên khoảng
Do đó: hay
Lại có: Tập giá trị là Giá trị nhỏ nhất của hàm số bằng 9.
Vậy
Bài 6 trang 59 Toán lớp 10: Nhảy bungee là một trò chơi mạo hiểm. Trong trò chơi này, người chơi đứng ở vị trí trên cao, thắt dây an toàn và nhảy xuống. Sợi dây này có tính đàn hồi và được tính toán chiều dài để nó kéo người chơi lại khi gần chạm đất (hoặc mặt nước). Chiếc cầu trong Hình 1 có bộ phận chống đỡ dạng parabol. Một người muốn thực hiện một cú nhày bungee từ giữa cầu xuống với dây an toàn. Người này cần trang bị sợi dây an toàn dài bao nhiêu mét? Biết rằng chiều dài của sợi dây đó bằng một phần ba khoảng cách từ vị trí bắt đầu nhảy đến mặt nước.
Phương pháp giải:
Gắn hệ trục tọa độ, gọi công thức của hàm số có đồ thị là hình ảnh của bộ phận chống đỡ.
Xác định hàm số và xác định tung độ của đỉnh.
Lời giải:
Gọi là công thức của hàm số có đồ thị là hình ảnh của bộ phận chống đỡ.
Chọn hệ trục tọa độ Oxy như hình dưới:
Gọi S là đỉnh của parabol, dưới vị trí nhảy 1m.
A, B là các điểm như hình vẽ.
Dễ thấy: A (48; 46,2) và B (117+48; 0) = (165; 0).
Các điểm O, A, B đều thuộc đồ thị hàm số.
Do đó:
Giải hệ phương trình ta được
Vậy
Đỉnh S có tọa độ là
Khoảng cách từ vị trí bắt đầu nhảy đến mặt nước là:
Bài 7 trang 59 Toán lớp 10: Giả sử một máy bay cứu trợ đang bay theo phương ngang và bắt đầu thả hàng từ độ cao 80 m, lúc đó máy bay đang bay với vận tốc 50 m/s. Để thùng hàng cứu trợ rơi đúngvị trí được chọn, máy bay cần bắt đầu thả hàng từ vị trí nào? Biết rằng nếu chọn gốc toạ độ là hình chiếu trên mặt đất của vị trí hàng cứu trợ bắt đầu được thả, thì toạ độ của hàng cứu trợ được cho bởi hệ sau:
Trong đó, là vận tốc ban đầu và h là độ cao tính từ khi hàng rời máy bay.
Lưu ý: Chuyển động này được xem là chuyển động ném ngang.
Lời giải:
Gắn hệ trục tọa độ Oxy như hình dưới:
Gọi A vị trí hàng rơi xuống, khi đó . Ta có, tọa độ của A thỏa mãn:
Mà
Do đó hay khoảng cách giữa máy bay và thùng hàng cứu trợ là 200m.
Vậy để thùng hàng cứu trợ rơi đúng vị trí được chọn thì máy bay cần thả hàng khi cách điểm đó 200m.
Xem thêm các bài giải SGK Toán 10 Chân trời sáng tạo hay, chi tiết khác:
Bài 2: Hàm số bậc hai
Bài 1: Giá trị lượng giác của một góc từ 00 đến 1800
Bài 2: Định lí cosin và định lí sin
Bài 3: Giải tam giác và ứng dụng thực tế
====== ****&**** =====