Giải SBT Toán lớp 10 Bài 10: Vectơ trong mặt phẳng tọa độ
Giải SBT Toán 10 trang 58 Tập 1
Bài 4.22 trang 58 SBT Toán 10 Tập 1: Trong mặt phẳng toạ độ Oxy cho ba điểm M(4; 0), N(5; 2) và P(2, 3). Tìm toạ độ các đỉnh của tam giác ABC, biết M, N, P theo thứ tự là trung điểm cạnh BC, CA, AB.
Lời giải:
Cách 1:
Gọi A(xA; yA); B(xB; yB) và C(xC; yC) là tọa độ ba đỉnh của tam giác ABC.
Ta có:
+) M(4; 0) là trung điểm của BC nên
(1)
+) N(5; 2) là trung điểm của CA nên
(2)
+) P(2; 3) là trung điểm của AB nên
(3)
Thay (2) và (3) vào (1) ta được:
Þ A(3; 5)
Khi đó Þ B(1; 1)
Þ C(7; –1)
Vậy A(3; 5), B(1; 1) và C(7; –1).
Cách 2:
Do M, N, P lần lượt là trung điểm của BC, CA, AB
Nên MN, NP, PM là các đường trung bình của tam giác ABC.
Þ MN // AB, NP // BC, MP // AC.
+) Do MN // BM và NP // BM nên tứ giác MNPB là hình bình hành
Gọi B(xB; yB) và có M(4; 0), N(5; 2) và P(2, 3).
và
Khi đó Þ B(1; 1)
Tương tự ta cũng có A(3; 5) và C(7; –1).
Vậy A(3; 5), B(1; 1) và C(7; –1).
Bài 4.23 trang 58 SBT Toán 10 Tập 1: Trong mặt phẳng toạ độ Oxy cho ba điểm A(2;–1), B(1; 4) và C(7; 0).
a) Tính độ dài các đoạn thẳng AB, BC và CA. Từ đó suy ra tam giác ABC là một tam giác vuông cân.
b) Tìm toạ độ của điểm D sao cho tứ giác ABDC là một hình vuông.
Lời giải:
a) Với A(2;–1), B(1; 4) và C(7; 0) ta có:
Do đó AB = CA
Nên tam giác ABC cân tại A (1)
Mặt khác:
Và
Þ BC2 = AB2 + AC2
Theo định lí Pythagoras đảo thì tam giác ABC vuông tại A (2)
Từ (1) và (2) suy ra tam giác ABC vuông cân tại A với
b)
Vì ABC là tam giác vuông cân
Nên để ABDC là hình vuông thì tứ giác ABDC là hình bình hành
Gọi D(xD; yD) và có A(2;–1), B(1; 4), C(7; 0).
và
Do đó
Þ D(6; 5).
Vậy tọa độ điểm D cần tìm là D(6; 5).
Bài 4.24 trang 58 SBT Toán 10 Tập 1: Trong mặt phẳng toạ độ Oxy cho hai điểm M(–2; 1) và N(4; 5).
a) Tìm toạ độ của điểm P thuộc Ox sao cho PM = PN.
b) Tìm toạ độ của điểm Q sao cho
c) Tìm toạ độ của điểm R thoả mãn Từ đó suy ra P, Q, R thẳng hàng.
Lời giải:
a) Gọi P(a; 0) là điểm thuộc tia Ox.
Với M(–2; 1) và N(4; 5) ta có:
Do đó PM = PN
Û (–2 – a)2 + 12 = (4 – a)2 + 52
Û 4 + 4a + a2 + 1 = 16 – 8a + a2 + 25
Û 12a = 36
Û a = 3.
Vậy P(3; 0).
b) Giả sử điểm Q có tọa độ là Q(x; y).
Với M(–2; 1), N(4; 5) và P(3; 0) ta có:
Do đó
Þ Q(0; 11).
Vậy Q(0; 11).
c) Giả sử R(x0; y0) là điểm cần tìm.
Với M(–2; 1) và N(4; 5) ta có:
Do đó
+) Ta xét ba điểm: P(3; 0), Q(0; 11) và
và
Có: nên hai vectơ và cùng phương
Do đó P, Q, R thẳng hàng
Vậy ba điểm P, Q, R thẳng hàng.
Giải SBT Toán 10 trang 59, 60 Tập 1
Bài 4.25 trang 59 SBT Toán 10 Tập 1: Trong mặt phẳng toạ độ Oxy cho hai điểm M(–3; 2) và N(2; 7).
a) Tìm toạ độ của điểm P thuộc trục tung sao cho M, N, P thẳng hàng.
b) Tìm toạ độ của điểm Q đối xứng với N qua Oy.
c) Tìm toạ độ của điểm R đối xứng với M qua trục hoành.
Lời giải:
a) Giả sử P(0; yP) là điểm thuộc trục tung.
Với M(–3; 2) và N(2; 7) ta có:
và
Ba điểm M, N, P thẳng hàng
và cùng phương
(với yP ≠ 7)
Û 3.(yP – 7) = –2.(yP – 2)
Û 3.yP – 21 = –2yP + 4
Û 3.yP + 2yP = 4 + 21
Û 5.yP = 25
Û yP = 5 (thỏa mãn)
Vậy P(0; 5).
b)
Vì Q đối xứng với N(2; 7) qua Oy nên:
+ Hoành độ của điểm Q là số đối của hoành độ điểm N;
+ Tung độ của điểm Q bằng với tung độ của điểm N.
Do đó Q(–2; 7).
Vậy Q(–2; 7).
c)
Vì R đối xứng với M(–3; 2) qua trục hoành nên:
+ Hoành độ của điểm R bằng hoành độ điểm M;
+ Tung độ của điểm R bằng số đối của tung độ điểm M.
Do đó R(–3; –2).
Vậy R(–3; –2).
Bài 4.26 trang 60 SBT Toán 10 Tập 1: Trong mặt phẳng toạ độ Oxy cho hai điểm C(1; 6) và D(11; 2).
a) Tìm toạ độ của điểm E thuộc trục tung sao cho vectơ có độ dài ngắn nhất.
b) Tìm toạ độ của điểm F thuộc trục hoành sao cho đạt giá trị nhỏ nhất.
c) Tìm tập hợp các điểm M sao cho
Lời giải:
a) Giả sử E(0; yE) là điểm thuộc trục tung.
Với C(1; 6) và D(11; 2) ta có:
và
Vì (8 – 2yE)2 ≥ 0 ∀ yE
Nên 122 + (8 – 2yE)2 ≥ 122 ∀ yE
Hay ∀ yE
∀ yE
Do đó độ dài của vectơ nhỏ nhất bằng 12
Dấu “=’ xảy ra Û 8 – 2yE = 0
Û yE = 4
Vậy với E(0; 4) thì vectơ có độ dài ngắn nhất.
b) Giả sử F(a; 0) thuộc trục hoành.
Với C(1; 6) và D(11; 2) ta có:
Vì (35 – 5a)2 ≥ 0 ∀a
Nên (35 – 5a)2 + 182 ≥ 182 ∀a
Hay ∀a
∀a
Do đó độ dài của vectơ nhỏ nhất bằng 18
Dấu “=’ xảy ra Û 35 – 5a = 0
Û a = 7
Vậy với F(7; 0) thì đạt giá trị nhỏ nhất.
c) Giả sử M(x ; y) là tọa độ điểm thỏa mãn
Với C(1; 6) và D(11; 2) ta có:
+)
Gọi I là trung điểm của CD, khi đó ta có:
• Tọa độ của I là: Þ I(6; 4).
•
Ta có
Do đó tập hợp điểm M là đường tròn tâm I(6; 4) và bán kính
Giải SBT Toán 10 trang 61, 62 Tập 1
Bài 4.27 trang 61 SBT Toán 10 Tập 1: Trong mặt phẳng toạ độ Oxy cho ba điểm A(1; 2), B(3; 4) và C(2; –1).
a) Chứng minh rằng A, B, C là ba đỉnh của một tam giác. Tìm toạ độ trọng tâm của tam giác đó.
b) Tìm toạ độ tâm I của đường tròn ngoại tiếp và trực tâm H của tam giác ABC.
Lời giải:
a) Với ba điểm A(1; 2), B(3; 4) và C(2; –1) ta có:
+)
+)
Do nên hai vectơ và không cùng phương
Do đó ba điểm A, B, C không thẳng hàng nên tạo thành một tam giác.
Gọi G(x; y) là tọa độ trọng tâm của tam giác ABC
Vậy
b) * Tìm tọa độ tâm đường tròn ngoại tiếp tam giác ABC.
Gọi I(a; b) là tọa độ tâm đường tròn ngoại tiếp tam giác ABC.
Khi đó IA = IB = IC.
Với ba điểm A(1; 2), B(3; 4) và C(2; –1) ta có:
Do đó IA = IB = IC Û IA2 = IB2 = IC2
Û (1 – a)2 + (2 – b)2 = (3 – a)2 + (4 – b)2 = (2 – a)2 + (–1 – b)2
* Tìm tọa độ trực tâm H của tam giác ABC.
Gọi H(x0; y0) là tọa độ trực tâm của tam giác ABC.
Vì H là trực tâm của tam giác ABC nên theo kết quả của Bài 4.15, phần a) trang 54 ta có (với M là trung điểm của BC).
Với A(1; 2), B(3; 4), C(2; –1) và ta có:
• Trung điểm M của BC có tọa độ là:
Ta có:
Vậy và
Bài 4.28 trang 62 SBT Toán 10 Tập 1: Để kéo đường dây điện băng qua một hồ hình chữ nhật ABCD với độ dài AB = 200 m, AD = 180 m, người ta dự định làm 4 cột điện liên tiếp cách đều, cột thứ nhất nằm trên bờ AB và cách đỉnh A khoảng cách 20 m, cột thứ tư nằm trên bờ CD và cách đỉnh C khoảng cách 30 m. Tính các khoảng cách từ vị trí các cột thứ hai, thứ ba đến các bờ AB, AD.
Lời giải:
Chọn hệ trục tọa độ Oxy sao cho các đỉnh của hình hồ hình chữ nhật có các tọa độ là A(0; 0), B(200; 0), C(200; 180) và D(0; 180).
Gọi vị trí các cột điện được trồng là C1, C2, C3 và C4.
Vì vị trí cột điện thứ nhất C1 nằm trên bờ AB và cách A một khoảng 20 m nên trong hệ trục tọa độ đã chọn, điểm C1(20; 0).
Vị trí cột điện thứ tư nằm trên bờ CD và cách C một khoảng 30 m nên khoảng cách từ C4 đến D là 170 m. Khi đó trong hệ trục tọa độ đã chọn, điểm C4(170; 180).
Vì bốn cột điện được trồng liên tiếp nhau và cách đều trên một đường thẳng nên:
C1C2 = C2C3 = C3C4
Þ C1C2 = C1C4 và C1C3 = C1C4.
và
Giả sử C2(a; b) và C3(x; y).
Với C1(20; 0), C4(170; 180) ta có:
Vậy khoảng cách từ cột điện thứ hai đến bờ AB là 60 m và đến bờ AD là 70 m.
Khoảng cách từ cột điện thứ ba đến bờ AB là 120 m và đến bờ AD là 120 m.
Xem thêm các bài giải SBT Toán 10 Kết nối tri thức hay, chi tiết khác:
Bài 9: Tích của một vectơ với một số
Bài 11: Tích vô hướng của hai vectơ
Bài tập cuối chương 4
Bài 12: Số gần đúng và sai số
====== ****&**** =====