Câu hỏi:
Hai lớp 6A và 6B tham gia phong trào tết trồng cây, mỗi em trồng 1 số cây như nhau, kết quả lớp 6A trồng được 132 cây và 6B được 135 cây. Hỏi mỗi lớp có bao nhiêu học sinh? (mỗi em trồng nhiều hơn 1 cây)
A. 6A: 43 học sinh; 6B: 45 học sinh;
B. 6A: 44 học sinh; 6B: 45 học sinh;
Đáp án chính xác
C. 6A: 42 học sinh; 6B: 45 học sinh;
D. 6A: 44 học sinh; 6B: 46 học sinh.
Trả lời:
Đáp án đúng là: B
Gọi số cây mỗi em trồng được là a (a \( \in \)\(\mathbb{N}\), 1 < a < 132)
Theo bài ra ta có: 132\( \vdots \)a, 135\( \vdots \)a. Khi đó a \( \in \)ƯC(132, 135)
Ta phân tích 132; 135 ra thừa số nguyên tố:
132 = 22.3.11
135 = 33.5
Ta thấy 3 là thừa số nguyên tố chung của 132; 135. Số mũ nhỏ nhất của 3 là 1 nên:
ƯCLN(132, 135) = 3
Các ước của 3 là 1; 3
Mà a > 1 nên a = 3
Vậy 6A có 132:3 = 44 học sinh
6B có 135:3 = 45 học sinh
====== **** mời các bạn xem câu tiếp bên dưới **** =====
- Một đội y tế có 24 bác sĩ và 108 y tá, có thể chia đội y tế đó thành nhiều nhất mấy tổ để các bác sĩ, y tá được chia đều vào các tổ?
Câu hỏi:
Một đội y tế có 24 bác sĩ và 108 y tá, có thể chia đội y tế đó thành nhiều nhất mấy tổ để các bác sĩ, y tá được chia đều vào các tổ?
A. 6;
B. 12;
Đáp án chính xác
C. 8;
D. 3.
Trả lời:
Đáp án đúng là: B
Gọi số tổ có thể chia được nhiều nhất là a (tổ) (a \( \in \)\(\mathbb{N}\), a < 24)
Theo bài ra ta có: 24\( \vdots \)a, 108\( \vdots \)a và a là lớn nhất
Nên a = ƯCLN(24, 108)
Ta phân tích 24 và 108 ra thừa số nguyên tố:
24 = 23.3
108 = 22.33
Ta thấy 2 và 3 là các thừa số nguyên tố chung của 24 và 108. Số mũ nhỏ nhất của 2 là 2, số mũ nhỏ nhất của 3 là 1 nên:
ƯCLN(24, 108) = 22.3 = 12
Vậy có thể chia được nhiều nhất 12 tổ.====== **** mời các bạn xem câu tiếp bên dưới **** =====
- Trong một buổi liên hoan ban tổ chức đã mua 96 cái kẹo và 36 cái bánh và được chia đều ra các đĩa gồm cả kẹo và bánh, có thể chia được nhiều nhất bao nhiêu đĩa?
Câu hỏi:
Trong một buổi liên hoan ban tổ chức đã mua 96 cái kẹo và 36 cái bánh và được chia đều ra các đĩa gồm cả kẹo và bánh, có thể chia được nhiều nhất bao nhiêu đĩa?
A. 6;
B. 12;
Đáp án chính xác
C. 8;
D. 3.
Trả lời:
Đáp án đúng là: B
Gọi a (chiếc) là số đĩa có thể chia được (a \( \in \)\(\mathbb{N}\), a < 36)
Theo bài ra ta có: 96\( \vdots \)a, 36\( \vdots \)a và a là lớn nhất
Nên a = ƯCLN(96, 36)
Ta phân tích 96 và 36 ra thừa số nguyên tố:
96 = 25.3
36 = 22.32
Ta thấy 2 và 3 là các thừa số nguyên tố chung của 96 và 36. Số mũ nhỏ nhất của 2 là 2, số mũ nhỏ nhất của 3 là 1 nên:
ƯCLN(96, 36) = 22.3 = 12
Vậy có thể chia nhiều nhất 12 đĩa.====== **** mời các bạn xem câu tiếp bên dưới **** =====
- Lớp 6A có 54 học sinh, 6B có 42 và 6C có 48 học sinh, trong ngày khai giảng ba lớp cùng xếp thành 1 số hàng dọc như nhau, mà không có người lẻ hàng. Tính số hàng dọc nhiều nhất có thể xếp được?
Câu hỏi:
Lớp 6A có 54 học sinh, 6B có 42 và 6C có 48 học sinh, trong ngày khai giảng ba lớp cùng xếp thành 1 số hàng dọc như nhau, mà không có người lẻ hàng. Tính số hàng dọc nhiều nhất có thể xếp được?
A. 2;
B. 3;
C. 6;
Đáp án chính xác
D. 8.
Trả lời:
Đáp án đúng là: C
Gọi a là số hàng dọc có thể xếp được (a \( \in \)\(\mathbb{N}\), a < 42)
Theo bài ra ta có: 54\( \vdots \)a, 42\( \vdots \)a, 48\( \vdots \)a và a là lớn nhất
Nên a = ƯCLN(54, 42, 48)
Ta phân tích 54; 42; 48 ra thừa số nguyên tố:
54 = 2.33
42 = 2.3.7
48 = 24.3
Ta thấy 2 và 3 là các thừa số nguyên tố chung của 54; 42; 48. Số mũ nhỏ nhất của 2 là 1, số mũ nhỏ nhất của 3 là 1 nên:
ƯCLN(54, 42, 48) = 2.3 = 6
Vậy có thể chia nhiều nhất 6 hàng.====== **** mời các bạn xem câu tiếp bên dưới **** =====
- Có 48 bút chì, 64 quyển vở, cô giáo muốn chia số bút và số vở thành 1 số phần thưởng như nhau, có thể chia được nhiều nhất bao nhiêu phần thưởng, số bút và số vở ở mỗi phần thưởng?
Câu hỏi:
Có 48 bút chì, 64 quyển vở, cô giáo muốn chia số bút và số vở thành 1 số phần thưởng như nhau, có thể chia được nhiều nhất bao nhiêu phần thưởng, số bút và số vở ở mỗi phần thưởng?
A. 16 phần thưởng, 3 cái bút, 4 quyển vở;
Đáp án chính xác
B. 8 phần thưởng, 6 cái bút, 8 quyển vở;
C. 4 phần thưởng, 12 cái bút, 16 quyển vở;
D. 2 phần thưởng, 24 cái bút, 32 quyển vở.
Trả lời:
Đáp án đúng là: A
Gọi a là số phần thưởng có thể chia theo yêu cầu đầu bài (a \( \in \)\(\mathbb{N}\), a < 48)
Theo bài ra ta có: 48\( \vdots \)a, 64\( \vdots \)a và a là lớn nhất
Nên a = ƯCLN(48, 64)
Ta phân tích 48 và 64 ra thừa số nguyên tố:
48 = 24.3
64 = 26
Ta thấy 2 là thừa số nguyên tố chung của 48; 64. Số mũ nhỏ nhất của 2 là 4 nên:
ƯCLN(48, 64) = 24 = 16
Vậy có thể chia nhiều nhất 16 phần thưởng.
Số bút ở mỗi phần thưởng là: 48:16 = 3 cái.
Số vở ở mỗi phần thưởng là: 64:16 = 4 quyển.====== **** mời các bạn xem câu tiếp bên dưới **** =====
- Bạn Lan có 48 viên bi đỏ, 30 viên bi xanh, 66 bi vàng, Lan muốn chia đều số bi vào các túi sao cho mỗi túi đều có 3 loại bi. Hỏi Lan có thể chia được nhiều nhất bao nhiêu túi, mỗi túi có bao nhiêu viên bi đỏ?
Câu hỏi:
Bạn Lan có 48 viên bi đỏ, 30 viên bi xanh, 66 bi vàng, Lan muốn chia đều số bi vào các túi sao cho mỗi túi đều có 3 loại bi. Hỏi Lan có thể chia được nhiều nhất bao nhiêu túi, mỗi túi có bao nhiêu viên bi đỏ?
A. 3 túi, 16 bi đỏ;
B. 6 túi, 8 bi đỏ;
Đáp án chính xác
C. 2 túi, 24 bi đỏ;
D. 8 túi, 6 bi đỏ.
Trả lời:
Đáp án đúng là: B
Gọi a là số túi mà Lan có thể chia (a \( \in \)\(\mathbb{N}\), a < 30)
Theo bài ra ta có: 48\( \vdots \)a, 30\( \vdots \)a, 66\( \vdots \)a và a là lớn nhất
Nên a = ƯCLN(48, 30, 66)
Ta phân tích 48; 30; 66 ra thừa số nguyên tố:
48 = 24.3
30 = 2.3.5
66 = 2.3.11
Ta thấy 2; 3 là thừa số nguyên tố chung của 48; 30; 66. Số mũ nhỏ nhất của 2 là 1; số mũ nhỏ nhất của 3 là 1 nên:
ƯCLN(48, 30, 66) = 2.3 = 6
Vậy có thể chia nhiều nhất 6 túi
Số bi đỏ trong mỗi túi là: 48:6 = 8 viên bi.====== **** mời các bạn xem câu tiếp bên dưới **** =====