Lý thuyết Toán lớp 11 Bài 4: Hàm số lượng giác và đồ thị
A. Lý thuyết Hàm số lượng giác và đồ thị
1. Hàm số lượng giác
Quy tắc đặt tương ứng mỗi số thực x với số thực sinx được gọi là hàm số sin, kí hiệu y = sinx. Tập xác định của hàm số sin là .
Quy tắc đặt tương ứng mỗi số thực x với số thực cosx được gọi là hàm số cos, kí hiệu y = cosx. Tập xác định của hàm số côsin là .
Hàm số cho bằng công thức được gọi là hàm số tang, kí hiệu là y = tanx. Tập xác định của hàm số tang là .
Hàm số cho bằng công thức được gọi là hàm số tang, kí hiệu là y = tanx. Tập xác định của hàm số tang là .
2. Hàm số chẵn, hàm số lẻ, hàm số tuần hoàn
a, Hàm số chẵn, hàm số lẻ
Cho hàm số y = f(x) có tập xác định là D.
Hàm số f(x) được gọi là hàm số chẵn nếu thì và . Đồ thị của một hàm số chẵn nhận trục tung (Oy) làm trục đối xứng.
Hàm số f(x) được gọi là hàm số lẻ nếu thì và . Đồ thị của một hàm số lẻ nhận gốc tọa độ làm tâm đối xứng.
b, Hàm số tuần hoàn
Hàm số y = f(x) có tập xác định D được gọi là hàm số tuần hoàn nếu tồn tại số T 0 sao cho với mọi ta có và
Số T dương nhỏ nhất thỏa mãn cách điều kiện trên (nêu có) được gọi là chu kì của hàm số tuần hoàn đó.
* Nhận xét:
Các hàm số y = sinx, y=cosx tuần hoàn chu kì 2.
Các hàm số y = tanx, y=cotx tuần hoàn chu kì .
3. Đồ thị của các hàm số lượng giác
a, Hàm số y = sinx
Tập xác định là .
Tập giá trị là [-1;1].
Là hàm số lẻ và tuần hoàn chu kì 2.
Đồng biến trên mỗi khoảng và nghịch biến trên mỗi khoảng .
Có đồ thị đối xứng qua gốc tọa độ và gọi là một đường hình sin.
b, Hàm số y = cosx
Tập xác định là .
Tập giá trị là [-1;1].
Là hàm số chẵn và tuần hoàn chu kì 2.
Đồng biến trên mỗi khoảng và nghịch biến trên mỗi khoảng .
Có đồ thị là một đường hình sin đối xứng qua trục tung.
c, Hàm số y = tanx
Tập xác định là .
Tập giá trị là .
Là hàm số lẻ và tuần hoàn chu kì .
Đồng biến trên mỗi khoảng , .
Có đồ thị đối xứng qua gốc tọa độ.
d, Hàm số y = cotx
Tập xác định là .
Tập giá trị là .
Là hàm số lẻ và tuần hoàn chu kì .
Đồng biến trên mỗi khoảng , .
Có đồ thị đối xứng qua gốc tọa độ.
B. Bài tập Hàm số lượng giác và đồ thị
Bài 1. Xét tính chẵn lẻ của các hàm số sau:
a)
b) f(x) = |x|.sin x.
Hướng dẫn giải
⇔ sin 2x ≠ 0 ⇔ 2x ≠ kπ ⇔ , k ∈ ℤ.
Vậy hàm số f(x) xác định trên là tập đối xứng.
Ta có:
Vậy hàm số là hàm số lẻ.
b) Hàm số f(x) xác định trên D = ℝ là tập đối xứng
Ta có: f(−x) = |−x|.sin (−x) = |x|.sin x = −f(x).
Vậy hàm số f(x) = |x|.sin x là hàm số lẻ.
Bài 2. Tìm tập xác định của hàm số:
Hướng dẫn giải
Hàm số xác định ⇔
Vì nên
⇒
Do đó y xác định khi và chỉ khi ⇔ cos x ≠ 1 ⇔ x ≠ k2π.
Vậy tập xác định của hàm số là D = ℝ \ {k2π, k ∈ ℤ}.
Bài 3. Dựa vào đồ thị của hàm số y = sin x, vẽ đồ thị của hàm số y = |sin x|.
Hướng dẫn giải
Ta biết đồ thị hàm số y = sin x có dạng như sau:
Với hàm số y = |sin x| ta có:
Từ dồ thị hàm số y = sin x ta có thể suy ra đồ thị hàm số y = |sin x| bằng cách:
– Giữ nguyên phần đồ thị nằm phía trên trục Ox (sin x > 0).
– Lấy đối xứng phần đồ thị nằm phía dưới Ox qua Ox.
Như vậy, ta được đồ thị hàm số y = |sin x| có dạng như sau (nét liền).
Video bài giảng Toán 11 Bài 4: Hàm số lượng giác và đồ thị – Chân trời sáng tạo
Xem thêm các bài tóm tắt lý thuyết Toán lớp 11 Chân trời sáng tạo hay, chi tiết khác:
Lý thuyết Bài 3: Các công thức lượng giác
Lý thuyết Bài 4: Hàm số lượng giác và đồ thị
Lý thuyết Bài 5: Phương trình lượng giác cơ bản
Lý thuyết Bài 1: Dãy số
Lý thuyết Bài 2: Cấp số cộng
Lý thuyết Bài 3: Cấp số nhân
Xem thêm các bài tóm tắt lý thuyết chương Toán lớp 11 Chân trời sáng tạo hay, chi tiết khác:
Lý thuyết Chương 1: Hàm số lượng giác và phương trình lượng giác
Lý thuyết Chương 2: Dãy số. Cấp số cộng. Cấp số nhân
Lý thuyết Chương 3: Giới hạn. Hàm số liên tục
Lý thuyết Chương 4: Đường thẳng và mặt phẳng. Quan hệ song song trong không gian
Lý thuyết Chương 5: Các số đặc trưng đo xu thế trung tâm cho mẫu số liệu ghép nhóm