Lý thuyết Toán lớp 8 Bài 4: Đồ thị hàm số bậc nhất y = ax + b (a ≠ 0)
A. Lý thuyết Đồ thị hàm số bậc nhất y = ax + b (a ≠ 0)
1. Đồ thị của hàm số bậc nhất
Đồ thị của hàm số y = ax + b (a0) là một đường thẳng.
Chú ý: Đồ thị hàm số y = ax + b (a0) còn gọi là đường thẳng y = ax + b (a0).
Ví dụ: Cho hàm số y = 2x – 3 có hai điểm A(1, -1) và B(2; 1) thuộc đồ thị của hàm số y = 2x – 3.
2. Vẽ đồ thị của hàm số bậc nhất
Hàm số y = ax (a0)
Để vẽ đồ thị của hàm số y = ax (a0), ta có thể xác định điểm A(1; a) rồi vẽ đường thẳng đi qua hai điểm O và A.
Hàm số y = ax + b (a0)
Để vẽ đồ thị của hàm số y = ax + b (a0, b0), ta có thể xác định hai điểm P(0; b) và Q rồi vẽ dường thẳng đi qua hai điểm đó.
Ví dụ: Cho hàm số y = -2x + 4
Với x = 0 thì y = 4, ta được điểm P(0;4)
Với y = 0 thì x = 22, ta được điểm Q(2;0)
Vậy đồ thị hàm số y = -2x + 4 là đường thẳng đi qua hai điểm P(0;4) và Q(2;0)
3. Hệ số góc của đường thẳng y = ax + b (a0)
Góc tạo bởi đường thẳng y = ax + b (a0) và trục Ox.
Trong mặt phẳng tọa độ Oxy, cho đường thẳng y = ax + b (a0). Gọi A là giao điểm của đường thẳng y = ax + b và trục Ox, T là một điểm thuộc đường thẳng y = ax + b và có tung độ dương.
Góc tạo bởi hai tia Ax và AT gọi là góc tạo bởi đường thẳng y = ax + b và trục Ox (hoặc nói đường thẳng y = ax + b tạo với trục Ox một góc )
Hệ số góc
Trên mặt phẳng tọa độ Oxy, cho đường thẳng y = ax + b (a0). Hệ số a gọi là hệ số góc của đường thẳng y = ax + b (a0).
Nhận xét:
Khi hệ số góc a > 0 thì góc tạo bởi đường thẳng y = ax + b (a0) và trục Ox là góc nhọn. Hệ số a càng lớn thì góc càng lớn.
Khi hệ số góc a < 0 thì góc tạo bởi đường thẳng y = ax + b (a0) và trục Ox là góc tù. Hệ số a càng lớn thì góc càng lớn.
Ứng dụng của hệ số góc
Cho d: y = ax + b (a0) và d’: y = a’x + b’ (a’0)
a. d // d’ a = a’, b b’.
b.
c. d cắt d’ a a’
Ví dụ: y = 2x + 1, y = 2x + 3 là hai đường thẳng song song vì có hệ số góc bằng nhau và hệ số tự do khác nhau.
B. Bài tập Đồ thị hàm số bậc nhất y = ax + b (a ≠ 0)
Đang cập nhật …
==== ~~~~~~ ====