Bài 3: Bất phương trình bậc nhất hai ẩn
Tìm hiểu về bất phương trình bậc nhất hai ẩn, miền nghiệm và cách biểu diễn hình học của miền nghiệm.
Lý thuyết
1 1. Định nghĩa bất phương trình bậc nhất hai ẩn
Định nghĩa
Bất phương trình bậc nhất hai ẩn $x, y$ là bất phương trình có một trong các dạng:
- $ax + by + c < 0$
- $ax + by + c > 0$
- $ax + by + c \leq 0$
- $ax + by + c \geq 0$
trong đó $a, b, c$ là các số thực đã cho, $a$ và $b$ không đồng thời bằng $0$.
Nghiệm của bất phương trình
Mỗi cặp số $(x_0; y_0)$ sao cho $ax_0 + by_0 + c < 0$ (hoặc $>0, \leq 0, \geq 0$) là một nghiệm của bất phương trình đã cho.
2 2. Miền nghiệm của bất phương trình bậc nhất hai ẩn
Khái niệm miền nghiệm
Trong mặt phẳng tọa độ $Oxy$, tập hợp các điểm có tọa độ là nghiệm của bất phương trình bậc nhất hai ẩn được gọi là miền nghiệm của bất phương trình đó.
Biểu diễn hình học
Đường thẳng $d: ax + by + c = 0$ chia mặt phẳng tọa độ thành hai nửa mặt phẳng có bờ là $d$. Một trong hai nửa mặt phẳng đó (có thể tính cả bờ $d$) là miền nghiệm của bất phương trình $ax + by + c \leq 0$.
3 3. Cách xác định miền nghiệm
Các bước thực hiện
- Vẽ đường thẳng $d: ax + by + c = 0$.
- Lấy một điểm $M_0(x_0; y_0)$ không thuộc $d$ (thường lấy gốc tọa độ $O(0;0)$ nếu $c eq 0$).
- Tính $P = ax_0 + by_0 + c$.
- So sánh $P$ với $0$ để kết luận nửa mặt phẳng chứa $M_0$ hay không chứa $M_0$ là miền nghiệm.
Chú ý: Nếu bất phương trình có dấu $<$ hoặc $>$ thì miền nghiệm không kể biên (vẽ đường thẳng $d$ bằng nét đứt).
Các dạng bài tập
1 Dạng 1: Kiểm tra một điểm có thuộc miền nghiệm hay không
Phương pháp giải
Để kiểm tra điểm $M(x_0; y_0)$ có thuộc miền nghiệm của bất phương trình $ax + by + c < 0$ hay không, ta thực hiện:
- Thay $x = x_0$ và $y = y_0$ vào vế trái của bất phương trình.
- Tính giá trị biểu thức $P = ax_0 + by_0 + c$.
- Nếu $P < 0$ thì điểm $M$ thuộc miền nghiệm. Nếu $P \geq 0$ thì điểm $M$ không thuộc miền nghiệm.
Ví dụ minh họa
Giải:
Xét điểm $O(0; 0)$: Thay vào vế trái ta được $2(0) - 0 + 1 = 1 > 0$ (thỏa mãn).
Vậy gốc tọa độ $O(0; 0)$ thuộc miền nghiệm của bất phương trình đã cho.
2 Dạng 2: Biểu diễn hình học miền nghiệm của bất phương trình
Phương pháp giải
- Vẽ đường thẳng $d: ax + by + c = 0$.
- Chọn điểm thử (thường là $O(0;0)$) để xác định nửa mặt phẳng nghiệm.
- Tô đậm hoặc gạch chéo phần không phải là miền nghiệm.
Ví dụ minh họa
Giải:
1. Vẽ đường thẳng $d: x + 2y - 4 = 0$ đi qua $(4; 0)$ và $(0; 2)$.
2. Thử với $O(0; 0)$: $0 + 2(0) - 4 = -4 < 0$ (thỏa mãn).
3. Miền nghiệm là nửa mặt phẳng bờ $d$ chứa gốc tọa độ $O$ (kể cả bờ $d$).
3 Dạng 3: Bài toán ứng dụng thực tế
Phương pháp giải
- Phân tích bài toán, gọi $x, y$ là các đại lượng cần tìm (kèm điều kiện).
- Thiết lập bất phương trình từ giả thiết bài toán.
- Giải và biện luận dựa trên yêu cầu thực tế.
Ví dụ minh họa
Giải:
Số tiền lãi từ gạo loại I là $3000x$ (đồng).
Số tiền lãi từ gạo loại II là $5000y$ (đồng).
Tổng số tiền lãi là $3000x + 5000y$ (đồng).
Theo bài ra ta có bất phương trình: $3000x + 5000y > 100000$ hay $3x + 5y > 100$.
Sẵn sàng thử thách bản thân?
Hoàn thành 10 câu hỏi để củng cố kiến thức và kiểm tra mức độ hiểu bài
Làm bài tập ngayBài học trong chương: Chương II: Bất phương trình và Hệ bất phương trình bậc nhất hai ẩn
Đây là bài đầu tiên
Bài tiếp theo
Bài 4: Hệ bất phương trình bậc nhất hai ẩn