Lý thuyết Toán lớp 6 Bài 5: Phép nhân các số nguyên
Video giải Toán 6 Bài 5: Phép nhân các số nguyên – Cánh diều
A. Lý thuyết Phép nhân các số nguyên
I. Phép nhân hai số nguyên khác dấu
Để nhân hai số nguyên khác dấu, ta làm như sau:
Bước 1. Bỏ dấu “–” trước số nguyên âm, giữ nguyên số nguyên còn lại
Bước 2. Tính tích của hai số nguyên dương nhận được ở Bước 1
Bước 3. Thêm dấu “–” trước kết quả nhận được ở Bước 2, ta có tích cần tìm.
Chú ý: Tích của hai số nguyên khác dấu là số nguyên âm.
Ví dụ: (– 6) . 7 = – (6 . 7) = – 42
20 . (– 10) = – (20 . 10) = – 200
II. Phép nhân hai số nguyên cùng dấu
1. Phép nhân hai số nguyên dương
Nhân hai số nguyên dương chính là nhân hai số tự nhiên khác 0.
Ví dụ: 4 . 6 = 24; 16 . 2 = 32.
2. Phép nhân hai số nguyên âm
Để nhân hai số nguyên âm, ta làm như sau:
Bước 1. Bỏ dấu “–” trước mỗi số
Bước 2. Tính tích của hai số nguyên dương nhận được ở Bước 1, ta có tích cần tìm.
Chú ý: Tích của hai số nguyên cùng dấu là số nguyên dương.
Ví dụ: (– 5) . (– 9) = 5 . 9 = 45
(– 20) . (– 6) = 20 . 6 = 120
Chú ý: Cách nhận biết dấu của tích
(+) . (+) → (+)
(–) . (–) → (+)
(+) . (–) → (–)
(–) . (+) → (–)
III. Tính chất của phép nhân các số nguyên
Giống như phép nhân các số tự nhiên, phép nhân các số nguyên cũng có các tính chất: giao hoán; kết hợp; nhân với số 1; phân phối của phép nhân đối với phép cộng, phép trừ.
+ Tính chất giao hoán: a . b = b . a
+ Tính chất kết hợp: (a . b) . c = a . (b . c)
+ Tính chất nhân với số 1: a . 1 = 1 . a = a
+ Tính chất phân phối của phép nhân đối với phép cộng: a . (b + c) = a . b + a . c
Tính chất phân phối của phép nhân đối với phép trừ: a . (b – c) = a . b – a . c
Chú ý:
a . 0 = 0 . a = 0
a . b = 0 thì hoặc a = 0 hoặc b = 0
Ví dụ: Tính
a) (– 9) . 4 . (– 5);
b) (– 127 086) . 674 . 0;
c) (– 4) . 7 + (– 4) . 3.
Lời giải:
a) (– 9) . 4 . (– 5) = (– 9) . [4 . (– 5)] = (– 9) . (– 20) = 9 . 20 = 180
b) (– 127 086) . 674 . 0 = 0
c) (– 4) . 7 + (– 4) . 3 = (– 4) . (7 + 3) = (– 4) . 10 = – 40
B. Bài tập tự luyện
Bài 1. Thực hiện các phép tính sau:
a) (– 15) . (– 4); b) (– 20) . (– 6); c) 20 . 7.
Lời giải:
a) Ta có: (– 15) . (– 4) = 15 . 4 = 60
b) Ta có: (– 20) . (– 6) = 20 . 6 = 120
c) Ta có: 20 . 7 = 140
Bài 2. Một xí nghiệp mỗi ngày may được 350 bộ quần áo. Khi may theo mốt mới, với cùng khổ vải, số vải dùng để máy một bộ quần áo tăng x (cm) và năng suất không thay đổi. Hỏi mỗi ngày số vải tăng bao nhiêu xăng-ti-mét với:
a) x = 15? b) x = – 10?
Lời giải:
Vì mỗi bộ quần áo mốt mới cần thêm x (cm) vải nên 350 bộ quần áo thì cần thêm 350 . x (cm) vải.
Do đó mỗi ngày số vải tăng 350 . x (cm)
a) Với x = 15, mỗi ngày số vải tăng là 350 . 15 = 5 250 (cm)
b) Với x = – 10, mỗi ngày số vải tăng là 350 . (–10) = – 3 500 (cm)
Nghĩa là số vải giảm đi 3 500 (cm).
Bài 3. Thực hiện các phép tính sau
a) (– 4) . 2 . 6 . 25 . (– 7) . 5
b) 16 . (38 – 2) – 38 . (16 – 1)
Lời giải:
a) Ta có: (– 4) . 2 . 6 . 25 . (– 7) . 5
= [(– 4) . 25] . (2 . 5) . [6 . (– 7)]
= (– 100) . 10 . (– 42)
= (– 1 000) . (– 42)
= 42 000
b) Ta có: 16 . (38 – 2) – 38 . (16 – 1)
= 16 . 38 – 16 . 2 – 38 . 16 + 38
= (16 . 38 – 38 . 16) + 38 – 16 . 2
= 0 + 38 – 32 = 6
Xem thêm các bài tóm tắt lý thuyết Toán 6 Cánh diều hay, chi tiết khác:
Bài 4: Phép trừ số nguyên. Quy tắc dấu ngoặc
Bài 6: Phép chia hết hai số nguyên. Quan hệ chia hết trong tập hợp số nguyên
Chương 2: Số nguyên
Bài 1: Tam giác đều. Hình vuông. Lục giác đều
Bài 2: Hình chữ nhật. Hình thoi
====== ****&**** =====