Câu hỏi:
Giải các hệ phương trình sau bằng phương pháp Gauss:
a)
b)
c)
Trả lời:
Hướng dẫn giải
a)
Vậy hệ phương trình đã cho có nghiệm duy nhất (0; –1; 1).
b)
Từ phương trình thứ hai ta có x = –2y + 5, thay vào phương trình thứ nhất ta được z = –2y + 3. Vậy hệ phương trình đã cho có vô số nghiệm dạng (–2y + 5; y; –2y + 3).
c)
Vì phương trình thứ ba của hệ vô nghiệm nên hệ đã cho vô nghiệm.
====== **** mời các bạn xem câu tiếp bên dưới **** =====
- Giải các hệ phương trình sau:
a) x+y+z=6x+2y+3z=143x−2y−z=−4;
b) 2x−2y+z=63x+2y+5z=77x+3y−6z=1;
c) 2x+y−6z=13x+2y−5z=57x+4y−17z=7;
d) 5x+2y−7z=62x+3y+2z=79x+8y−3z=1.
Câu hỏi:
Giải các hệ phương trình sau:
a) ;b) ;
c) ;d) .
Trả lời:
a)
Vậy hệ phương trình đã cho có nghiệm là (x; y; z) = (1; 2; 3).
b)
Vậy hệ phương trình đã cho có nghiệm là (x; y; z) =
c)
Rút y theo z từ phương trình thứ hai ta được y = 7 – 8z. Rút x theo y và z từ phương trình thứ nhất ta được x = Vậy hệ đã cho có vô số nghiệm và tập nghiệm của hệ là S = {(7z – 3; 7 – 8z; z) | z
d)
Từ hai phương trình cuối, suy ra –46 = 49, điều này vô lí.
Vậy hệ ban đầu vô nghiệm.====== **** mời các bạn xem câu tiếp bên dưới **** =====
- Tìm các số thực A, B và C thoả mãn 1×3+1=Ax+1+Bx+Cx2−x+1.
Câu hỏi:
Tìm các số thực A, B và C thoả mãn
Trả lời:
Vậy
====== **** mời các bạn xem câu tiếp bên dưới **** =====
- Tìm parabol y = ax2 + bx + c trong mỗi trường hợp sau:
a) Parabol đi qua ba điểm A(2; –1), B(4; 3) và C(–1; 8);
b) Parabol nhận đường thẳng x = 52 làm trục đối xứng và đi qua hai điểm M(1; 0), N(5; –4).
Câu hỏi:
Tìm parabol y = ax2 + bx + c trong mỗi trường hợp sau:
a) Parabol đi qua ba điểm A(2; –1), B(4; 3) và C(–1; 8);
b) Parabol nhận đường thẳng x = làm trục đối xứng và đi qua hai điểm M(1; 0), N(5; –4).Trả lời:
a) Parabol đi qua ba điểm A(2; –1), B(4; 3) và C(–1; 8) nên ta có hệ phương trình:
Giải hệ này ta được a = b = c =
Vậy phương trình của parabol là
b) Parabol nhận đường thẳng x = làm trục đối xứng, suy ra 5a + b = 0.
Parabol đi qua hai điểm M(1; 0), N(5; –4), suy ra
và
hay a + b + c = 0 và 25a + 5b + c = –4.
Vậy ta có hệ phương trình:
Giải hệ này ta được a = –1, b = 5, c = –4.
Vậy phương trình của parabol là y = –x2 + 5x – 4.====== **** mời các bạn xem câu tiếp bên dưới **** =====
- Trong mặt phẳng toạ độ, viết phương trình đường tròn đi qua ba điểm A(0; 1), B(2; 3) và C(4; 1).
Câu hỏi:
Trong mặt phẳng toạ độ, viết phương trình đường tròn đi qua ba điểm A(0; 1), B(2; 3) và C(4; 1).
Trả lời:
Giả sử đường tròn cần viết có phương trình x2 + y2 – 2ax – 2by + c = 0 (a2 + b2 – c > 0).
Vì đường tròn đi qua ba điểm A(0; 1), B(2; 3) và C(4; 1) nên ta có hệ:
Giải hệ này ta được a = 2, b = 1, c = 1 (thoả mãn điều kiện).
Vậy đường tròn cần viết có phương trình x2 + y2 – 4x – 2y + 1 = 0.====== **** mời các bạn xem câu tiếp bên dưới **** =====
- Một đoàn xe chở 255 tấn gạo tiếp tế cho đồng bào vùng bị lũ lụt. Đoàn xe có 36 chiếc gồm ba loại: xe chở 5 tấn, xe chở 7 tấn và xe chở 10 tấn. Biết rằng tổng số hai loại xe chở 5 tấn và chở 7 tấn nhiều gấp ba lần số xe chở 10 tấn. Hỏi mỗi loại xe có bao nhiêu chiếc?
Câu hỏi:
Một đoàn xe chở 255 tấn gạo tiếp tế cho đồng bào vùng bị lũ lụt. Đoàn xe có 36 chiếc gồm ba loại: xe chở 5 tấn, xe chở 7 tấn và xe chở 10 tấn. Biết rằng tổng số hai loại xe chở 5 tấn và chở 7 tấn nhiều gấp ba lần số xe chở 10 tấn. Hỏi mỗi loại xe có bao nhiêu chiếc?
Trả lời:
Gọi số xe loại chở 5 tấn, chở 7 tấn và chở 10 tấn lần lượt là x, y, z.
Theo đề bài, ta có:
– Có tổng cộng 255 tấn gạo, suy ra 5x + 7y + 10z = 255 (1).
– Đoàn xe có 36 chiếc, suy ra x + y + z = 36 (2).
– Tổng số hai loại xe chở 5 tấn và chở 7 tấn nhiều gấp ba lần số xe chở 10 tấn, suy ra (x + y) = 3z hay x + y – 3z = 0 (2).
Từ (1), (2) và (3) ta có hệ phương trình:
Giải hệ này ta được x = 12, y = 15, z = 9.
Vậy số xe loại chở 5 tấn, chở 7 tấn và chở 10 tấn lần lượt là 12 xe, 15 xe và 9 xe.====== **** mời các bạn xem câu tiếp bên dưới **** =====