Câu hỏi:
Cho tứ giác ABCD. Xét các mệnh đề:
P: “Tứ giác ABCD là hình bình hành”, Q: “Tứ giác ABCD có các cạnh đối bằng nhau”.
Hãy phát biểu hai mệnh đề P ⇒ Q và Q ⇒ P, sau đó xác định tính đúng sai của mỗi mệnh đề đó. Nếu cả hai mệnh đề P ⇒ Q và Q ⇒ P đều đúng, hãy phát biểu mệnh đề tương đương.
Trả lời:
Mệnh đề P ⇒ Q được phát biểu như sau:
“Nếu tứ giác ABCD là hình bình hành thì tứ giác ABCD có các cạnh đối bằng nhau”.
Mệnh đề Q ⇒ P được phát biểu như sau:
“Nếu tứ giác ABCD có các cạnh đối bằng nhau thì tứ giác ABCD là hình bình hành”.
Ta có tứ giác ABCD là hình hành thì theo tính chất tứ giác ABCD có các cặp cạnh đối bằng nhau. Do đó mệnh đề P ⇒ Q đúng.
Ngược lại ta có tứ giác ABCD có các cặp cạnh đối bằng nhau thì theo dấu hiệu nhận biết tứ giác ABCD là hình hành. Do đó mệnh đề Q ⇒ P đúng.
Từ đó ta có mệnh đề tương đương P ⇔ Q được phát biểu như sau:
“Tứ giác ABCD là hình hành khi và chỉ khi tứ giác ABCD có các cặp cạnh đối bằng nhau”.
====== **** mời các bạn xem câu tiếp bên dưới **** =====
- Phát biểu nào sau đây không là mệnh đề toán học?
Câu hỏi:
Phát biểu nào sau đây không là mệnh đề toán học?
A. Số 2 025 chia hết cho 5.
B. Nếu hình thang ABCD nội tiếp đường tròn thì hình thang đó cân.
C. Nếu bạn Minh chăm chỉ thì bạn Minh sẽ thành công.
Đáp án chính xác
D. Các số nguyên tố đều là số lẻ.
Trả lời:
Đáp án đúng là C
Mệnh đề toán học là một khẳng định về một sự kiện trong toán học.
Do đó A, B, D đều là các mệnh đề toán học.
Ý C không là mệnh đề toán học.====== **** mời các bạn xem câu tiếp bên dưới **** =====
- Phủ định của mệnh đề “∀n ∈ ℕ, n2 + n là số chẵn” là:
Câu hỏi:
Phủ định của mệnh đề “∀n ∈ ℕ, n2 + n là số chẵn” là:
A. “∀n ∈ ℕ, n2 + n không là số chẵn”.
B. “∃n ∈ ℕ, n2 + n không là số lẻ”.
C. “∃n ∈ ℕ, n2 + n là số lẻ”.
Đáp án chính xác
D. “∃n ∈ ℕ, n2 + n là số chẵn”.
Trả lời:
Đáp án đúng là C
Phủ định của mệnh đề “∀n ∈ ℕ, n2 + n là số chẵn” là mệnh đề “∃n ∈ ℕ, n2 + n không là số chẵn” hay “∃n ∈ ℕ, n2 + n là số lẻ”.====== **** mời các bạn xem câu tiếp bên dưới **** =====
- Cho tập hợp A = {x ∈ ℝ| – 3 ≤ x < 2}. A là tập hợp nào sau đây?
Câu hỏi:
Cho tập hợp A = {x ∈ ℝ| – 3 ≤ x < 2}. A là tập hợp nào sau đây?
A. (– 3; 2).
B. { – 3; – 2; – 1; 0; 1}.
C. {– 3; 2}.
D. [– 3; 2).
Đáp án chính xác
Trả lời:
Đáp án đúng là D
Ta có A = {x ∈ ℝ| – 3 ≤ x < 2} là tập hợp gồm các số thực thỏa mãn – 3 ≤ x < 2. Do đó A = {x ∈ ℝ| – 3 ≤ x < 2} = [– 3; 2).====== **** mời các bạn xem câu tiếp bên dưới **** =====
- Cho hai tập hợp A = {x ∈ ℝ| x + 3 < 4 + 2x}, B = {x ∈ ℝ| 5x – 3 < 4x – 1}. Tất cả các số nguyên thuộc cả hai tập hợp A và B là:
Câu hỏi:
Cho hai tập hợp A = {x ∈ ℝ| x + 3 < 4 + 2x}, B = {x ∈ ℝ| 5x – 3 < 4x – 1}. Tất cả các số nguyên thuộc cả hai tập hợp A và B là:
A. 0 và 1.
Đáp án chính xác
B. – 1; 0; 1 và 2.
C. 1 và 2.
D. 1.
Trả lời:
Đáp án đúng là A
Xét x + 3 < 4 + 2x
⇔ x – 2x < 4 – 3
⇔ –x < 1
⇔ x > – 1.
⇒ A = (– 1; +∞)
Xét 5x – 3 < 4x – 1
⇔ 5x – 4x < – 1 + 3
⇔ x < 2
⇒ B = (– ∞; 2)
Tập tất cả các số thực thuộc cả hai tập hợp A và B là A∩B.
Khi đó A∩B = (– 1; 2).
Ta cần tìm các số nguyên thuộc cả hai tập hợp A và B hay chính là tìm số nguyên thuộc tập A∩B .
Suy ra các số nguyên thỏa mãn điều kiện trên là 0 và 1.====== **** mời các bạn xem câu tiếp bên dưới **** =====
- Cho hai tập hợp E = (2; 4] và F = (4; 5). E∪F bằng:
Câu hỏi:
Cho hai tập hợp E = (2; 4] và F = (4; 5). E∪F bằng:
A. (2; 5).
Đáp án chính xác
B. .
C. [2; 5).
D. (2; 5].
Trả lời:
Đáp án đúng là A
Ta có: E = (2; 4] = {x ∈ ℝ| 2 < x ≤ 4} và F = (4; 5) = {x ∈ ℝ| 4 < x < 5}
Khi đó E∪F = {x ∈ ℝ| 2 < x ≤ 4 hoặc 4 < x < 5} = {x ∈ ℝ| 2 < x < 5} = (2; 5).====== **** mời các bạn xem câu tiếp bên dưới **** =====