Câu hỏi:
Quan sát Hình 6.
a) Nêu quy luật sắp xếp các chấm đỏ và vàng xen kẽ nhau khi xếp các chấm đó từ góc trên bên trái xuống góc dưới bên phải (tạo thành hinh vuông).
b) Giả sử hình vuông thứ n có mỗi cạnh chứa n chấm. Tinh tổng số chấm được xếp trong hình vuông (kể cả trên cạnh). Chứng minh kết quả đó bằng phương pháp quy nạp toán học.
Trả lời:
a) Số chấm tăng thêm sau mỗi lượt xếp (kể từ lượt đầu tiên) là các số lẻ liên tiếp bắt đầu từ 1.
b) Vì ở hình vuông thứ n có mỗi cạnh chứa n chấm nên tổng số chấm là n2.
Mặt khác, theo cách sắp xếp trên ta lại có tổng số chấm là: 1 + 3 + 5 + … + (2n – 1).
Như vậy ta sẽ chứng minh mệnh đề
P(n): “1 + 3 + 5 + … + (2n – 1) = n2 với mọi nℕ*“.
+) Khi n = 1, ta có: 1 = 12.
Vậy mệnh đề đúng với n = 1.
+) Với k là một số nguyên dương tuỳ ý mà mệnh đề đúng, ta phải chứng minh mệnh đề cũng đúng với k + 1, tức là: 1 + 3 + 5 + … + (2k – 1) + [2(k+1) – 1] = (k + 1)2.
Thật vậy, theo giả thiết quy nạp ta có: 1 + 3 + 5 + … + (2k – 1) = k2.
Khi đó:
1 + 3 + 5 + … + (2k – 1) + [2(k+1) – 1]
= [1 + 3 + 5 + … + (2k – 1)] + [2(k+1) – 1]
= k2 + [2(k+1) – 1]
= k2 + (2k + 2 –1)
= k2 + 2k + 1
= (k + 1)2.
Vậy mệnh đề cũng đúng với n = k + 1. Do đó theo nguyên lí quy nạp toán học, mệnh đề P(n) đúng với mọi nℕ*.
====== **** mời các bạn xem câu tiếp bên dưới **** =====
- Xét mệnh đề chứa biến P(n) : “1 + 3 + 5 + … + (2n – 1) = n2” với n là số nguyên dương.
a) Chứng tỏ rằng P(1) là mệnh đề đúng.
b) Với k là một số nguyên dương tuỳ ý mà P(k) là mệnh đề đúng, cho biết 1 + 3 + 5 + … + (2k – 1) bằng bao nhiêu.
c) Với k là một số nguyên dương tuỳ ý mà P(k) là mệnh đề đúng, chứng tỏ rằng P(k+1) cũng là mệnh đề đúng bằng cách chỉ ra k2 + [2(k + 1) – 1] = (k+1)2.
Câu hỏi:
Xét mệnh đề chứa biến P(n) : “1 + 3 + 5 + … + (2n – 1) = n2” với n là số nguyên dương.
a) Chứng tỏ rằng P(1) là mệnh đề đúng.
b) Với k là một số nguyên dương tuỳ ý mà P(k) là mệnh đề đúng, cho biết 1 + 3 + 5 + … + (2k – 1) bằng bao nhiêu.
c) Với k là một số nguyên dương tuỳ ý mà P(k) là mệnh đề đúng, chứng tỏ rằng P(k+1) cũng là mệnh đề đúng bằng cách chỉ ra k2 + [2(k + 1) – 1] = (k+1)2.Trả lời:
a) Ta có P(1): “1 = 12“. Mệnh đề này đúng vì 12 = 1.
b) Với k là một số nguyên dương tuỳ ý mà P(k) là mệnh đề đúng thì 1 + 3 + 5 + … + (2k – 1) = k2.
c) Khi P(k) là mệnh đề đúng. Ta có:
P(k+1) = 1 + 3 + 5 + … + (2k – 1) + [2(k+1) – 1] = P(k) + [2(k+1) – 1]
= k2 + [2(k+1) – 1] = k2 + (2k + 2 – 1) = k2 + 2k + 1 = (k+1)2
Vậy P(k+1) cũng là mệnh đề đúng.====== **** mời các bạn xem câu tiếp bên dưới **** =====
- Chứng minh rằng với mọi n ∈ ℕ* ta có:
a) 11+2+12+3+…+1n+n+1=n+1−1.
b) 23−123+1⋅33−133+1⋅43−143+1⋯n3−1n3+1=2n2+n+13n(n+1).
Câu hỏi:
Chứng minh rằng với mọi n ℕ* ta có:
a)
b)Trả lời:
a)
+) Khi n = 1, ta có:
Vậy mệnh đề đúng với n = 1.
+) Với k là một số nguyên dương tuỳ ý mà mệnh đề đúng, ta phải chứng minh mệnh đề cũng đúng với k + 1, tức là:
Thật vậy, theo giả thiết quy nạp ta có:
Khi đó:
Vậy mệnh đề cũng đúng với n = k + 1. Do đó theo nguyên lí quy nạp toán học, mệnh đề đã cho đúng với mọi n ℕ*.
b)
+) Khi n = 2, ta có:
Vậy mệnh đề đúng với n = 2.
+) Với k là một số nguyên dương tuỳ ý mà mệnh đề đúng, ta phải chứng minh mệnh đề cũng đúng với k + 1, tức là:
Thật vậy, theo giả thiết quy nạp ta có:
Khi đó:
Vậy mệnh đề cũng đúng với n = k + 1. Do đó theo nguyên lí quy nạp toán học, mệnh đề đã cho đúng với mọi n ℕ*.
====== **** mời các bạn xem câu tiếp bên dưới **** =====
- Chứng minh với mọi n ∈ ℕ*, (1+2)n, (1−2)n lần lượt viết được ở dạng an+bn2, an−bn2, trong đó an, bn là các số nguyên dương.
Câu hỏi:
Chứng minh với mọi n ℕ*, lần lượt viết được ở dạng , trong đó an, bn là các số nguyên dương.
Trả lời:
+) Khi n = 1, ta có:
a1 = 1, b1 = 1.
Vậy mệnh đề đúng với n = 1.
+) Với k là một số nguyên dương tuỳ ý mà mệnh đề đúng, ta phải chứng minh mệnh đề cũng đúng với k + 1, tức là: viết được dưới dạng trong đó ak + 1, bk + 1 là các số nguyên dương.
Thật vậy, theo giả thiết quy nạp ta có:
với ak, bk là các số nguyên dương.
Khi đó:
Vì ak, bk là các số nguyên dương nên ak + 2bk và ak + bk cũng là các số nguyên dương.
Vậy mệnh đề cũng đúng với n = k + 1. Do đó theo nguyên lí quy nạp toán học, mệnh đề đã cho đúng với mọi n ℕ*.
+) Theo chứng minh trên ta có:
Với mọi n ℕ* thì với an, bn là các số nguyên dương.
Chứng minh tương tự ta được:
Với mọi n ℕ* thì với cn, dn là các số nguyên dương.
Giờ ta chứng minh an = cn và bn = dn với mọi n ℕ*.Ta có:
Từ (2) ta suy ra với k > 0 (vì an, bn, cn, dn là các số nguyên dương)
Thế vào (1) ta được:
an = cn và bn = dn.
Vậy ta có điều phải chứng minh.====== **** mời các bạn xem câu tiếp bên dưới **** =====
- Chứng minh 16n – 15n – 1 chia hết cho 225 với mọi n∈ℕ*.
Câu hỏi:
Chứng minh 16n – 15n – 1 chia hết cho 225 với mọi nℕ*.
Trả lời:
+) Khi n = 1, ta có: 161 – 15n – 1 = 0 ⁝ 225.
Vậy mệnh đề đúng với n = 1.
+) Với k là một số nguyên dương tuỳ ý mà mệnh đề đúng, ta phải chứng minh mệnh đề cũng đúng với k + 1, tức là: 16k + 1 – 15(k + 1) – 1 chia hết cho 225.
Thật vậy, theo giả thiết quy nạp ta có: 16k – 15k – 1 chia hết cho 225.
Khi đó:
16k + 1 – 15(k + 1) – 1
= 16 . 16k – 15k – 16
= 16 . 16k – (240k – 225k) – 16
= 16 . 16k – 240k + 225k – 16
= 16 . 16k – 240k – 16 + 225k
= 16 (16k – 15k – 1) + 225k
Vì (16k – 15k – 1) và 225k đều chia hết cho 225 nên 16 (16k – 15k – 1) + 225k ⁝ 225, do đó 16k + 1 – 15(k + 1) – 1 ⁝ 225.
Vậy mệnh đề cũng đúng với n = k + 1. Do đó theo nguyên lí quy nạp toán học, mệnh đề đã cho đúng với mọi n ℕ*.====== **** mời các bạn xem câu tiếp bên dưới **** =====
- Cho Sn = 1 + 2 + 22 +… + 2n và Tn = 2n + 1 – 1, với n ℕ*.
a) So sánh S1 và T1; S2 và T2; S3 và T3.
b) Dự đoán công thức tính Sn và chứng minh bằng phương pháp quy nạp toán học.
Câu hỏi:
Cho Sn = 1 + 2 + 22 +… + 2n và Tn = 2n + 1 – 1, với n ℕ*.
a) So sánh S1 và T1; S2 và T2; S3 và T3.
b) Dự đoán công thức tính Sn và chứng minh bằng phương pháp quy nạp toán học.Trả lời:
a) S1 = 1 + 21 = 3, S2 = 1 + 2 + 22 = 7, S3 = 1 + 2 + 22 + 23 = 15.
T1 = 21 + 1 – 1 = 3, T2 = 22 + 1 – 1 = 7, T3 = 23 + 1 – 1 = 15.
Vậy S1 = T1; S2 = T2; S3 = T3.
b) Ta dự đoán Sn = Tn với n ℕ*.
+) Khi n = 1, ta có: S1 = T1.
Vậy mệnh đề đúng với n = 1.
+) Với k là một số nguyên dương tuỳ ý mà mệnh đề đúng, ta phải chứng minh mệnh đề cũng đúng với k + 1, tức là: Sk + 1 = Tk + 1.
Thật vậy, theo giả thiết quy nạp ta có: Sk = Tk.
Khi đó:
Sk + 1 = 1 + 2 + 22 +… + 2k + 2k + 1
= Sk + 2k + 1
= Tk + 2k + 1
= (2k + 1 – 1) + 2k + 1
= 2 . 2k + 1 – 1
= 2k + 2 – 1
= 2(k + 1) + 1 – 1
=Tk + 1.
Vậy mệnh đề cũng đúng với n = k + 1. Do đó theo nguyên lí quy nạp toán học, mệnh đề đã cho đúng với mọi nℕ*. Vậy Sn = Tn = 2n + 1 – 1 với nℕ*.
====== **** mời các bạn xem câu tiếp bên dưới **** =====