Câu hỏi:
Trong một biểu kỉ niệm ngày thành lập trường, bí thư Đoàn trường cần chọn 4 tiết mục từ 6 tiết mục mục hát và 4 tiết mục từ 5 tiết mục múa rồi xếp thứ tự biểu diễn. Hỏi có bao nhiêu cách chọn và xếp thứ tự sao cho các tiết mục hát và múa xen kẽ nhau?
A. 43 200;
B. 75;
C. 86 400;
Đáp án chính xác
D. 480.
Trả lời:
Hướng dẫn giải
Đáp án đúng là: C
Giả sử các tiết mục được biểu diễn đánh số thứ tự từ 1 đến 8. Vì số lượng tiết mục hát và múa bằng nhau nên có hai trường hợp:
Trường hợp 1: Tiết mục hát diễn ra đầu tiên
Khi đó, các tiết mục hát có số thứ tự là số lẻ, còn các tiết mục múa có số thứ tự là số chẵn. Như vậy, thứ tự của các tiết mục múa và hát được cố định, chỉ thay đổi thứ tự giữa các tiết mục múa, hoặc giữa các tiết mục hát.
Chọn 4 tiết mục hát từ 6 tiết mục hát và xếp thứ tự có:
\(A_6^4 = 360\) (cách)
Chọn 4 tiết mục múa từ 5 tiết mục múa và xếp thứ tự có:
\(A_5^4 = 120\) (cách)
Khi đó, số cách chọn và xếp thứ tự các tiết mục văn nghệ trong trường hợp tiết mục hát diễn ra đầu tiên là:
360.120 = 43 200
Trường hợp 2: Tiết mục múa diễn ra đầu tiên
Tương tự, số cách chọn và xếp thứ tự các tiết mục văn nghệ trong trường hợp tiết mục múa diễn ra đầu tiên là:
120.360 = 43 200
Vậy số cách chọn và xếp thứ tự các tiết mục văn nghệ sao cho các tiết mục hát và múa xen kẽ nhau là:
43 200 + 43 200 = 86 400.
====== **** mời các bạn xem câu tiếp bên dưới **** =====
- Số tập hợp con có 3 phần tử của một tập hợp có 7 phần tử là:
Câu hỏi:
Số tập hợp con có 3 phần tử của một tập hợp có 7 phần tử là:
A. \(C_7^3\);
Đáp án chính xác
B. \(A_7^3\);
C. \(\frac{{7!}}{{3!}}\);
D. 7.
Trả lời:
Đáp án đúng là: A
Ta chọn 3 phần tử bất kỳ trong 7 phần tử ta sẽ được một tập con có 3 phần tử của tập có 7 phần tử. Vậy mỗi cách chọn như vậy là là một tổ hợp chập 3 của 7 phần tử.
Số tập con là \(C_7^3\)====== **** mời các bạn xem câu tiếp bên dưới **** =====
- Có bao nhiêu cách xếp 8 người vào một bàn tròn
Câu hỏi:
Có bao nhiêu cách xếp 8 người vào một bàn tròn
A. 720;
B. 5040;
Đáp án chính xác
C. 40320;
D. 35280.
Trả lời:
Đáp án đúng là: B
Vì xếp vào bàn tròn nên vị trí xếp đầu tiên là như nhau nên có 1 cách xếp, ta xếp 7 người còn lại vào 7 vị trí nên có 7! Cách xếp
Vậy có 1.7! = 5040 cách xếp====== **** mời các bạn xem câu tiếp bên dưới **** =====
- Một tổ gồm 12 học sinh trong đó có bạn An. Hỏi có bao nhiêu cách chọn 4 em đi trực trong đó phải có An:
Câu hỏi:
Một tổ gồm 12 học sinh trong đó có bạn An. Hỏi có bao nhiêu cách chọn 4 em đi trực trong đó phải có An:
A. 990;
B. 495;
C. 220;
D. 165.
Đáp án chính xác
Trả lời:
Đáp án đúng là: D
Chọn An có 1 cách chọn.
Chọn 3 bạn trong 11 bạn còn lại có \(C_{11}^3 = 165\) cách chọn.
Vậy có 1.165 = 165 cách chọn.====== **** mời các bạn xem câu tiếp bên dưới **** =====
- Có bao nhiêu cách lập các nhóm gồm 2, 3, 5 học sinh từ một tổ có 10 học sinh?
Câu hỏi:
Có bao nhiêu cách lập các nhóm gồm 2, 3, 5 học sinh từ một tổ có 10 học sinh?
A. \(C_{10}^2\)+\(C_8^3\)+\(C_5^5\);
B. \(C_{10}^2\).\(C_{10}^3\).\(C_{10}^5\);
C. \(C_{10}^2\).\(C_8^3\).\(C_5^5\);
D. \(C_{10}^2\)+\(C_{10}^3\)+\(C_{10}^5\).
Đáp án chính xác
Trả lời:
Đáp án đúng là: C
Ta lập nhóm có 2 học sinh: ta chọn bất kỳ 2 học sinh trong 10 học sinh có \(C_{10}^2\) cách
Ta lập nhóm có 3 học sinh: vì chọn 2 học sinh để lập nhóm đầu tiên nên còn lại 8 học sinh, ta chọn 3 học sinh bất kì trong 8 học sinh có \(C_8^3\) cách
Ta lập nhóm có 5 học sinh: vì đã lập nhóm có 2 và 3 học sinh nên còn lại 5 học sinh, ta chọn 5 học sinh để lập thành nhóm có \(C_5^5\) cách
Vậy có \(C_{10}^2\).\(C_8^3\).\(C_5^5\) cách====== **** mời các bạn xem câu tiếp bên dưới **** =====
- Có bao nhiêu vectơ khác vectơ \(\overrightarrow 0 \) được tạo thành từ 10 điểm phân biệt khác nhau
Câu hỏi:
Có bao nhiêu vectơ khác vectơ \(\overrightarrow 0 \) được tạo thành từ 10 điểm phân biệt khác nhau
A. 45;
B. 90;
Đáp án chính xác
C. 35;
D. 55.
Trả lời:
Đáp án đúng là: B
Giả sử ta có 2 điểm A, B phân biệt thì có hai vectơ là vectơ \(\overrightarrow {AB} \) và vectơ \(\overrightarrow {BA} \)
Vì cứ chọn 2 điểm bất kỳ trong 10 điểm ta được hai vectơ nên mỗi cách chọn ra 2 điểm trong 10 điểm là một tổ hợp chập 2 của 10 phần tử. Hay số vectơ được tạo thành từ 10 điểm phân biệt là chỉnh hợp chập 2 của 10. Vậy số vectơ được tạo thành từ 10 điểm phân biệt khác nhau là 2.\(C_{10}^2\) = \(A_{10}^2\) = 90 (vectơ).====== **** mời các bạn xem câu tiếp bên dưới **** =====