Câu hỏi:
Gọi S là tập hợp tất cả các số tự nhiên có 4 chữ số đôi một khác nhau. Chọn ngẫu nhiên một số từ S. Xác suất chọn được số lớn hơn 2500 là:
A. \(\frac{{13}}{{68}}\);
B. \(\frac{{55}}{{68}}\);
C. \(\frac{{68}}{{81}}\);
Đáp án chính xác
D. \(\frac{{13}}{{81}}\).
Trả lời:
Đáp án đúng là: C
Số có 4 chữ số có dạng: \(\overline {abcd} \) (a ≠ 0)
Công đoạn 1, Chọn số a có 9 cách chọn (vì a có thể chọn ngẫu nhiên 1 trong 9 số từ 1 đến 9).
Công đoạn 2, chọn số b có 9 cách chọn (vì b ≠ a mà từ 0 đến 9 có 10 số nhưng b không được chọn lại số mà a đã chọn nên b còn 9 số để chọn).
Công đoạn 3, chọn số c có 8 cách chọn (vì c ≠ a, c ≠ b mà từ 0 đến 9 có 10 số nhưng c không được chọn lại số mà a và b đã chọn nên c còn 8 số để chọn).
Công đoạn 4, chọn số d có 7 cách chọn (vì d ≠ a, d ≠ b, d ≠ c mà từ 0 đến 9 có 10 số nhưng d không được chọn lại số mà a, b và c đã chọn nên d còn 7 số để chọn).
Số phần tử của không gian mẫu: n(S) = 9.9.8.7 = 4536.
Gọi A: “ tập hợp các số tự nhiên có 4 chữ số phân biệt và lớn hơn 2500” ta có các trường hợp sau:
Trường hợp 1, a > 2
Chọn a: có 7 cách chọn (vì a có thể chọn ngẫu nhiên 1 trong 7 số từ 3 đến 9).
Chọn b: có 9 cách chọn (vì b ≠ a mà từ 0 đến 9 có 10 số nhưng b không được chọn lại số mà a đã chọn nên b còn 9 số để chọn).
Chọn c: có 8 cách chọn (vì c ≠ a, c ≠ b mà từ 0 đến 9 có 10 số nhưng c không được chọn lại số mà a và b đã chọn nên c còn 8 số để chọn).
Chọn d: có 7 cách chọn (vì d ≠ a, d ≠ b, d ≠ c mà từ 0 đến 9 có 10 số nhưng d không được chọn lại số mà a, b và c đã chọn nên d còn 7 số để chọn).
Vậy trường hợp này có: 7.9.8.7 = 3528 (số).
Trường hợp 2, a = 2 và b > 5.
Chọn a: có 1 cách chọn (vì a = 2).
Chọn b: có 4 cách chọn (vì b có thể chọn 1 trong 4 số từ 6 đến 9).
Chọn c: có 8 cách chọn (vì c ≠ a, c ≠ b mà từ 0 đến 9 có 10 số nhưng c không được chọn lại số mà a và b đã chọn nên c còn 8 số để chọn).
Chọn d: có 7 cách chọn (vì d ≠ a, d ≠ b, d ≠ c mà từ 0 đến 9 có 10 số nhưng d không được chọn lại số mà a, b và c đã chọn nên d còn 7 số để chọn).
Vậy trường hợp này có: 1.4.8.7 = 224 (số).
Trường hợp 3, a = 2, b = 5 và c > 0
Chọn a: có 1 cách chọn (vì a = 2).
Chọn b: có 1 cách chọn (vì b = 5).
Chọn c: có 7 cách chọn (vì c ≠ a, c ≠ b mà c > 0 nên c có thể chọn một trong các số từ 1 đến 9 có 9 số nhưng c không được chọn lại số mà a và b đã chọn nên c còn 7 số để chọn).
Chọn d: có 7 cách chọn (vì d ≠ a, d ≠ b, d ≠ c mà từ 0 đến 9 có 10 số nhưng d không được chọn lại số mà a, b và c đã chọn nên d còn 7 số để chọn).
Vậy trường hợp này có: 1.1.7.7 = 49 (số).
Trường hợp 4, a = 2; b = 5; c = 0; d > 0
Chọn a: có 1 cách chọn (vì a = 2).
Chọn b: có 1 cách chọn (vì b = 5).
Chọn c: có 1 cách chọn (vì c = 0).
Chọn d: có 7 cách chọn (vì d ≠ a, d ≠ b, d ≠ c mà từ 0 đến 9 có 10 số nhưng d không được chọn lại số mà a, b và c đã chọn nên d còn 7 số để chọn).
Vậy trường hợp này có: 1.1.1.7 = 7 (số).
Như vậy số phần tử của biến cố A là n(A) = 3528 + 224 + 49 + 7 = 3808.
Suy ra xác suất của biến cố A là: \(P\left( A \right) = \frac{{n\left( A \right)}}{{n\left( S \right)}} = \frac{{3808}}{{4536}} = \frac{{68}}{{81}}\).
Em nghĩ bài toán này nếu giải theo kiểu phần bù thì sẽ ngắn hơn nhiều ạ.
====== **** mời các bạn xem câu tiếp bên dưới **** =====
- Gieo một đồng tiền liên tiếp 3 lần thì số phần tử của không gian mẫu n(Ω) là
Câu hỏi:
Gieo một đồng tiền liên tiếp 3 lần thì số phần tử của không gian mẫu n(Ω) là
A. 4;
B. 6;
C. 8;
Đáp án chính xác
D. 16.
Trả lời:
Đáp án đúng là: C
Gieo đồng xu liên tiếp 3 lần nên ta có
Lần 1 có 2 khả năng xảy ra (có thể xuất hiện mặt sấp hoặc mặt ngửa).
Lần 2 có 2 khả năng xảy ra (có thể xuất hiện mặt sấp hoặc mặt ngửa).
Lần 3 có 2 khả năng xảy ra (có thể xuất hiện mặt sấp hoặc mặt ngửa).
Vậy số phần tử của không gian mẫu n(Ω) = 2.2.2 = 8.====== **** mời các bạn xem câu tiếp bên dưới **** =====
- Gieo một con xúc xắc cân đối đồng chất 2 lần. Số phần tử của không gian mẫu là?
Câu hỏi:
Gieo một con xúc xắc cân đối đồng chất 2 lần. Số phần tử của không gian mẫu là?
A. 6;
B. 12;
C. 18;
D. 36.
Đáp án chính xác
Trả lời:
Đáp án đúng là: D
Gieo một con xúc xắc cân đối đồng chất 2 lần nên ta có
Lần 1 có 6 khả năng sảy ra (số mặt xuất hiện từ 1 chấm đến 6 chấm).
Lần 2 có 6 khả năng sảy ra (số mặt xuất hiện từ 1 chấm đến 6 chấm).
Vậy số phần tử của không gian mẫu n(Ω) = 6.6 = 36.====== **** mời các bạn xem câu tiếp bên dưới **** =====
- Rút một lá bài từ bộ bài gồm 52 lá. Xác suất để được lá bích là
Câu hỏi:
Rút một lá bài từ bộ bài gồm 52 lá. Xác suất để được lá bích là
A. \(\frac{1}{{13}}\);
B. \(\frac{1}{4}\);
Đáp án chính xác
C. \(\frac{{12}}{{13}}\);
D. \(\frac{3}{4}\).
Trả lời:
Đáp án đúng là: B
Số phần tử của không gian mẫu n(Ω) = 52 (vì chọn 1 lá bài trong 52 lá nên có 52 cách chọn)
Gọi A là biến cố lá bài rút được là bích.
Số phần tử của biến cố A là n(A) = 13 (vì một bộ bài có 13 lá bích, chọn 1 lá bích trong 13 lá bích có 13 cách chọn)
Vậy xác suất để lấy được lá bích là \(P(A) = \frac{{13}}{{52}} = \frac{1}{4}\).====== **** mời các bạn xem câu tiếp bên dưới **** =====
- Gieo một đồng xu và một con xúc xắc cân đối đồng chất một lần. Số phần tử của không gian mẫu là:
Câu hỏi:
Gieo một đồng xu và một con xúc xắc cân đối đồng chất một lần. Số phần tử của không gian mẫu là:
A. 24;
B. 12;
Đáp án chính xác
C. 6;
D. 8.
Trả lời:
Đáp án đúng là: B
Gieo đồng xu có 2 khả năng có thể sảy ra (hoặc là sấp hoặc là ngửa)
Gieo súc sắc có 6 khả năng có thể sảy ra ({1 chấm, 2 chấm, 3 chấm, 4 chấm, 5 chấm, 6 chấm}).
Số phần tử của không gian mẫu n(Ω) = 2.6 = 12.====== **** mời các bạn xem câu tiếp bên dưới **** =====
- Gieo đồng xu cân đối đồng chất hai lần. Số phần tử của biến cố để mặt ngửa xuất hiện đúng 1 lần là:
Câu hỏi:
Gieo đồng xu cân đối đồng chất hai lần. Số phần tử của biến cố để mặt ngửa xuất hiện đúng 1 lần là:
A. 2;
Đáp án chính xác
B. 4;
C. 5;
D. 6.
Trả lời:
Đáp án đúng là: A
Vì mặt ngửa xuất hiện 1 lần nên chỉ có thể xuất hiện ở lần đầu gieo hoặc lần thứ 2 gieo nên số phần tử của biến cố là 2.
Do đó các kết quả thuận lợi cho biến cố A là: A = {NS; SN}.
Vậy có 2 kết quả thuận lợi cho A.====== **** mời các bạn xem câu tiếp bên dưới **** =====