Câu hỏi:
Lớp 11B có 25 đoàn viên trong đó có 10 nam và 15 nữ. Cho ngẫu nhiên 3 đoàn viên trong lớp để tham dự hội trại ngày 26 tháng 3. Tính xác suất để 3 đoàn viên được chọn có 2 nam và 1 nữ.
A. 3/115
B. 27/92
Đáp án chính xác
C. 9/92
D. 7/920
Trả lời:
Chọn 3 đoàn viên trong 25 đoàn viên thì có C253 cách chọn, do đó ta có: n(Ω) = C253 = 2300 phần tửCó 10 đoàn viên nam chọn 2 đoàn viên thì có C102 cách chọn; có 15 đoàn viên nữ chọn 1 nữ thì có C151 cách chọn.Gọi A là biến cố:”3 đoàn viên được chọn có 2 nam và 1 nữ” thì số phần tử của tập A là n(A) =C102.C151=675Vậy P(A) =(n(A))/(n(Ω))=675/2300=27/92. Chọn đáp án BNhận xét: học sinh thường mắc một số sai lầm khi tính:n(A) =C102+C151=60 ⇒P(A)=3/115n(A) = A102.A151=1350;n(Ω)=A253=13800 ⇒ P(A)=9/92n(A) = A102+A151=105;n(Ω)=A253=13800 ⇒P(A)=7/920Chọn D
====== **** mời các bạn xem câu tiếp bên dưới **** =====
- Lấy ngẫu nhiên 1 thẻ từ 1 hộp 30 thẻ được đánh số từ 1 đến 30.
Tính xác suất để thẻ được lấy ghi số 6
Câu hỏi:
Lấy ngẫu nhiên 1 thẻ từ 1 hộp 30 thẻ được đánh số từ 1 đến 30.
Tính xác suất để thẻ được lấy ghi số 6A. 1/30
Đáp án chính xác
B. 1/5
C. 6
D. 1/6
Trả lời:
Không gian mẫu Ω={1,2,..30}. kí hiệu A là biến cố “ thẻ lấy ra ghi số 6”,
A={6}, n(A) =1,n(Ω) = 30
⇒P(A) =1/30
Chọn đáp án A====== **** mời các bạn xem câu tiếp bên dưới **** =====
- Lấy ngẫu nhiên 1 thẻ từ 1 hộp 30 thẻ được đánh số từ 1 đến 30.
Tính xác suất để thẻ được lấy ghi số chia hết cho 5
Câu hỏi:
Lấy ngẫu nhiên 1 thẻ từ 1 hộp 30 thẻ được đánh số từ 1 đến 30.
Tính xác suất để thẻ được lấy ghi số chia hết cho 5A. 1/30
B. 1/5
Đáp án chính xác
C. 6
D. 1/6
Trả lời:
Gọi B là biến cố “lấy được thẻ chia hết cho 5”.
B = {5,10,15,20,25,30}, n(B) = 6
⇒P(B) =6/30 =1/5
Chọn đáp án là B
Nhận xét: học sinh có thể nhầm với số thẻ và số ghi trên thẻ, hoặc vận dụng nhầm công thức P(A) =(n(Ω))/(n(A)) dẫn đến các phương án khác còn lại.====== **** mời các bạn xem câu tiếp bên dưới **** =====
- Một lớp học có 40 học sinh trong đó có 15 học sinh giỏi Toán, 10 học sinh giỏi Văn và 5 học sinh giỏi cả Văn và Toán. Chọn ngẫu nhiên một học sinh.
Xác suất của biến cố A:”học sinh được chọn giỏi Toán” là:
Câu hỏi:
Một lớp học có 40 học sinh trong đó có 15 học sinh giỏi Toán, 10 học sinh giỏi Văn và 5 học sinh giỏi cả Văn và Toán. Chọn ngẫu nhiên một học sinh.
Xác suất của biến cố A:”học sinh được chọn giỏi Toán” là:A. 1/40
B. 8/3
C. 3/8
Đáp án chính xác
D. 1/8
Trả lời:
Ta có n(Ω) = 40
Vì có 15 học sinh giỏi toán nên: n(A) = 15
Suy ra: P(A) = 15/40 = 3/8
Chọn đáp án là C====== **** mời các bạn xem câu tiếp bên dưới **** =====
- Một lớp học có 40 học sinh trong đó có 15 học sinh giỏi Toán, 10 học sinh giỏi Văn và 5 học sinh giỏi cả Văn và Toán. Chọn ngẫu nhiên một học sinh.
Xác suất của biến cố B:”học sinh được chọn giỏi Văn” là:
Câu hỏi:
Một lớp học có 40 học sinh trong đó có 15 học sinh giỏi Toán, 10 học sinh giỏi Văn và 5 học sinh giỏi cả Văn và Toán. Chọn ngẫu nhiên một học sinh.
Xác suất của biến cố B:”học sinh được chọn giỏi Văn” là:A. 1/40
B. 1/4
Đáp án chính xác
C. 4
D. 1/8
Trả lời:
Ta có n(Ω) = 40
Vì có 10 học sinh giỏi văn nên n(B) = 10
Suy ra, P(B) = 10/40 =1/4
Chọn đáp án B====== **** mời các bạn xem câu tiếp bên dưới **** =====
- Một lớp học có 40 học sinh trong đó coa 15 học sinh giỏi Toán, 10 học sinh giỏi Văn và 5 học sinh giỏi cả Văn và Toán. Chọn ngẫu nhiên một học sinh.
Xác suất của biến cố C:”học sinh được chọn không giỏi Văn và Toán” là:
Câu hỏi:
Một lớp học có 40 học sinh trong đó coa 15 học sinh giỏi Toán, 10 học sinh giỏi Văn và 5 học sinh giỏi cả Văn và Toán. Chọn ngẫu nhiên một học sinh.
Xác suất của biến cố C:”học sinh được chọn không giỏi Văn và Toán” là:A. 15/32
B. 7/8
C. 1/2
Đáp án chính xác
D. Một đáp số khác
Trả lời:
Chọn đáp án C
Ta có n(Ω) = 40
Số học sinh giỏi Văn hoặc Toán gồm: học sinh chỉ giỏi Văn, học sinh chỉ giỏi Toán, học sinh giỏi cả Văn và Toán nên bằng
(15 +10) -5 = 20 em.
Do đó, số học sinh không giỏi cả Toán và Văn là 40 – 20 = 20 em, nên n(C) = 20
Vì vậy P(C) =(n(C))/(n(Ω))=1/2====== **** mời các bạn xem câu tiếp bên dưới **** =====