Câu hỏi:
Cho hình chóp S.ABCD có đáy là hình bình hành. M là trung điểm của SC. Tìm giao tuyến của (MAB) với (SCD).
A. Giao tuyến của (MAB) với (SCD) là điểm M
B. Giao điểm của (MAB) với (SCD) là đường thẳng MN, với N là giao điểm của SD và đường thẳng đi qua M, song song với AB.
Đáp án chính xác
C. Giao tuyến của (MAB) với (SCD) là đường thẳng MN, với N là giao điểm của MB và SD.
D. Giao tuyến của (MAB) với (SCD) là đường thẳng MN, với N là giao điểm của MA và SD.
Trả lời:
Do (MAB) chứa AB//CD, nên giao tuyến của (MAB) với (SCD) là đường thẳng đi qua M và song song với AB. Đường thẳng này cắt SD tại điểm N.Vậy giao tuyến của (MAB) với (SCD) là đường thẳng MN, với N là giao điểm của SD và đường thẳng đi qua M, song song với AB.Đáp án B.
====== **** mời các bạn xem câu tiếp bên dưới **** =====
- Trong các phát biểu sau, phát biểu nào đúng?
Câu hỏi:
Trong các phát biểu sau, phát biểu nào đúng?
A. Hai đường thẳng không có điểm chung thì song song với nhau
B. Hai đường thẳng không có điểm chung thì chéo nhau
C. Hai đường thẳng phân biệt không cắt nhau thì song song
D. Hai đường thẳng không cùng nằm trên một mặt phẳng thì chéo nhau.
Đáp án chính xác
Trả lời:
Phương án A sai vì hai đường thẳng có thể chéo nhau;Phương án B sai vì hai đường thẳng có thể song songPhương án C sai vì hai đường thẳng có thể chéo nhau. Đáp án D.
====== **** mời các bạn xem câu tiếp bên dưới **** =====
- Trong không gian cho ba đường thẳng a, b và c. Trong các phát biểu sau, phát biểu nào là đúng?
Câu hỏi:
Trong không gian cho ba đường thẳng a, b và c. Trong các phát biểu sau, phát biểu nào là đúng?
A. Nếu hai đường thẳng cùng song song với một đường thẳng thứ ba thì chúng song song với nhau
B. Nếu hai đường thẳng cùng chéo nhau với một đường thẳng thứ ba thì chúng chéo nhau.
C. Nếu đường thẳng a song song với b, đường thẳng b và c chéo nhau thì a và c chéo nhau hoặc cắt nhau.
Đáp án chính xác
D. Nếu hai đường thẳng a và b cắt nhau, b và c cắt nhau thì a và c cắt nhau hoặc song song.
Trả lời:
Phương án A sai vì hai đường thẳng có thể trùng nhauPhương án B sai vì hai đường thẳng có thể cùng song song hoặc cắt nhauPhương án D sai vì a và c có thể chéo nhau.Đáp án C.
====== **** mời các bạn xem câu tiếp bên dưới **** =====
- Cho hai đường thẳng a và b chéo nhau. Một đường thẳng c song song với a. khẳng định nào sau đây là đúng?
Câu hỏi:
Cho hai đường thẳng a và b chéo nhau. Một đường thẳng c song song với a. khẳng định nào sau đây là đúng?
A. b và c chéo nhau
B. b và c cắt nhau
C. b và c chéo nhau hoặc cắt nhau
Đáp án chính xác
D. b và c song song với nhau
Trả lời:
Phương án A sai vì b, c có thể cắt nhau.Phương án B sai vì b và c có thể chéo nhau.Phương án D sai vì nếu b và c song song thì a và b song song hoặc trùng nhau.Đáp án: C.
====== **** mời các bạn xem câu tiếp bên dưới **** =====
- Cho hình chóp S. ABCD có đáy là hình thang với các cạnh đáy là AB, CD. Gọi I, J lần lượt là trung điểm của AD, BC và G là trọng tâm tam giác SAB. Tìm thiết diện của hình chóp S.ABCD cắt bởi (IJG)
Câu hỏi:
Cho hình chóp S. ABCD có đáy là hình thang với các cạnh đáy là AB, CD. Gọi I, J lần lượt là trung điểm của AD, BC và G là trọng tâm tam giác SAB. Tìm thiết diện của hình chóp S.ABCD cắt bởi (IJG)
A. Thiết diện là tam giác GIJ.
B. Thiết diện là hình thang MIJN, với M, N là giao điểm của đường thẳng đi qua G và song song với AB với hai đường thẳng SA, SB.
Đáp án chính xác
C. Thiết diện là hình bình hành MIJN, với M, N là giao điểm của đường thẳng đi qua G và song song với AB với hai đường thẳng SA, SB.
D. Thiết diện là tam giác KIJ, với K là giao điểm của GI với SB.
Trả lời:
* Xét hình thang ABCD có I vag J lần lượt là trung điểm của AD và BC nên
IJ là đường thẳng trung bình của hình thang ABCD. Suy ra: IJ // AB.
* Hai mặt phẳng (GIJ) và (SAB) lần lượt chứa hai đường thẳng song song (là IJ và AB) nên giao tuyến của chúng là đường thẳng đi qua G và song song với AB.
Đường thẳng này cắt SA tại điểm M và cắt SB tại N.
Vậy thiết diện là hình thang MIJN, với M, N là giao điểm của đường thẳng đi qua G và song song với AB với hai đường thẳng SA, SB.
Đáp án B.====== **** mời các bạn xem câu tiếp bên dưới **** =====
- Hình bình hành ABCD và ABEF không cùng nằm trong một mặt phẳng. Trên cạnh AC lấy điểm M và trên cạnh BF lấy điểm N sao cho AM/AC = BN/BF = k. Tìm k để MN // DE.
Câu hỏi:
Hình bình hành ABCD và ABEF không cùng nằm trong một mặt phẳng. Trên cạnh AC lấy điểm M và trên cạnh BF lấy điểm N sao cho AM/AC = BN/BF = k. Tìm k để MN // DE.
A. k = 1/3
Đáp án chính xác
B. k = 3
C. k = 1/2
D. k = 2
Trả lời:
MN // DE nên DM, NE cắt nhau tại điểm I và
Lại có
(Áp dụng định lí Ta let vào tam giác DMC có AI// DC
và tam giác NEF có BI // EF)
Mặt khác:
Đáp án A.====== **** mời các bạn xem câu tiếp bên dưới **** =====