Câu hỏi:
Cổng Arch tại thành phố St Louis của Mỹ có hình dạng là một parabol (hình vẽ). Biết khoảng cách giữa hai chân cổng bằng 162m. Trên thành cổng, tại vị trí có độ cao 43m so với mặt đất (điểm M), người ta thả một sợi dây chạm đất (dây căng thẳng theo phương vuông góc với đất). Vị trí chạm đất của đầu sợi dây này cách chân cổng A một đoạn 10m. Giả sử các số liệu trên là chính xác. Hãy tính độ cao của cổng Arch (tính từ mặt đất đến điểm cao nhất của cổng).
A. 175,6m
B. 197,5m
C. 210m
D. 185,6m
Đáp án chính xác
Trả lời:
Đáp án D
====== **** mời các bạn xem câu tiếp bên dưới **** =====
- Tìm m để hàm số y = x2 − 2x + 2m + 3 có giá trị nhỏ nhất trên đoạn [2; 5] bằng −3.
Câu hỏi:
Tìm m để hàm số y = − 2x + 2m + 3 có giá trị nhỏ nhất trên đoạn [2; 5] bằng −3.
A. m = -3
Đáp án chính xác
B. m = -9
C. m = 1
D. m = 0
Trả lời:
Đáp án A
====== **** mời các bạn xem câu tiếp bên dưới **** =====
- Xác định các hệ số a và b để Parabol (P): y = ax2 + 4x – b có đỉnh I (-1; -5)
Câu hỏi:
Xác định các hệ số a và b để Parabol (P): y = a + 4x – b có đỉnh I (-1; -5)
A.
B.
C.
Đáp án chính xác
D.
Trả lời:
Đáp án C
====== **** mời các bạn xem câu tiếp bên dưới **** =====
- Cho parabol (P): y = ax2 + bx + c (a ≠ 0) có đồ thị như hình bên. Tìm các giá trị m để phương trình |ax2 + bx + c| = m có bốn nghiệm phân biệt.
Câu hỏi:
Cho parabol (P): y = a + bx + c (a 0) có đồ thị như hình bên. Tìm các giá trị m để phương trình |ax2 + bx + c| = m có bốn nghiệm phân biệt.
A. −1 < m < 3
B. 0 < m < 3.
Đáp án chính xác
C. 0 m 3.
D. −1 m 3.
Trả lời:
Đáp án B
====== **** mời các bạn xem câu tiếp bên dưới **** =====
- Tìm tất cả các giá trị mm để đường thẳng y = mx + 3 − 2m cắt parabol y = x2 − 3x − 5 tại 2 điểm phân biệt có hoành độ trái dấu.
Câu hỏi:
Tìm tất cả các giá trị mm để đường thẳng y = mx + 3 − 2m cắt parabol y = − 3x − 5 tại 2 điểm phân biệt có hoành độ trái dấu.
A. m < −3
B. −3 < m < 4
C. m < 4
Đáp án chính xác
D. m 4
Trả lời:
Đáp án C
====== **** mời các bạn xem câu tiếp bên dưới **** =====
- Đường thẳng d: y = (m − 3)x − 2m + 1 cắt hai trục tọa độ tại hai điểm A và B sao cho tam giác OAB cân. Khi đó, số giá trị của m thỏa mãn là:
Câu hỏi:
Đường thẳng d: y = (m − 3)x − 2m + 1 cắt hai trục tọa độ tại hai điểm A và B sao cho tam giác OAB cân. Khi đó, số giá trị của m thỏa mãn là:
A. 1
B. 0
C. 3
D. 2
Đáp án chính xác
Trả lời:
Đáp án D
====== **** mời các bạn xem câu tiếp bên dưới **** =====