Câu hỏi:
Cho hình chóp S.ABCD có đáy ABCD là hình bình hành. Gọi I; J lần lượt là trung điểm của SA; SB. Hỏi khẳng định nào sau đây là sai.
A. IJCD là hình thang
B.
C.
D. (O là tâm ABCD)
Đáp án chính xác
Trả lời:
+ Ta có IJ là đường trung bình của tam giác SAB nên IJ// AB// CD
=> IJCD là hình thang. Do đó A đúng.
+ Ta có Do đó B đúng.
+ Ta có Do đó C đúng.
+ Trong mặt phẳng (IJCD), gọi IC và JD cắt nhau tại M
Trong mp (ABCD), gọi O là giao điểm của AC và BD.
* Tìm giao tuyến của (IAC) và ( JBD)
nên S là điểm chung thứ nhất
lại có: nên O là điểm chung thứ hai .
=> giao tuyến của mặt phẳng (IAC) và (JBD) là SO
Do đó D sai.
Chọn D.
====== **** mời các bạn xem câu tiếp bên dưới **** =====
- Tìm mệnh đề đúng trong các mệnh đề sau:
Câu hỏi:
Tìm mệnh đề đúng trong các mệnh đề sau:
A. Nếu 3 điểm A; B; C là 3 điểm chung của 2 mặt phẳng (P) và (Q) thì A: B; C thẳng hàng
B.Nếu A: B; C thẳng hàng và (P ) và (Q) có điểm chung là A thì B; C cũng là 2 điểm chung của (P) và (Q).
C. Nếu 3 điểm A; B; C là 3 điểm chung của 2 mp (P) và (Q) phân biệt thì A; B; C không thẳng hàng.
D. Nếu A; B; C thẳng hàng và A; B là 2 điểm chung của (P) và (Q) thì C cũng là điểm chung của (P) và (Q)
Đáp án chính xác
Trả lời:
Chọn D.
Hai mặt phẳng phân biệt không song song với nhau thì chúng có duy nhất một giao tuyến- tập hợp tất cả điểm chung của hai mặt phẳng.
A sai. Nếu (P) và (Q) trùng nhau thì 2 mặt phẳng có vô số điểm chung. Khi đó, chưa đủ điều kiện để kết luận A; B; C thẳng hàng
B sai. Có vô số đường thẳng đi qua A, khi đó B; C chưa chắc đã thuộc giao tuyến của (P) và (Q) .
C sai. Hai mặt phẳng (P) và (Q) phân biệt giao nhau tại 1 giao tuyến duy nhất. Nếu 3 điểm A; B; C là 3 điểm chung của 2 mặt phẳng thì A; B; C cùng thuộc giao tuyến.====== **** mời các bạn xem câu tiếp bên dưới **** =====
- Cho hình chóp S. ABCD có đáy là hình thang (AB// CD). Tìm khẳng định sai?
Câu hỏi:
Cho hình chóp S. ABCD có đáy là hình thang (AB// CD). Tìm khẳng định sai?
A. Hình chóp có 4 mặt bên.
B. Giao tuyến của mặt phẳng (SAC) và (SBD) là SO. ( O là giao điểm của AC và BD).
C. Giao tuyến của mặt phẳng (SAD) và ( SBC) là SI ( I là giao điểm của AD và BC).
D. Giao tuyến của mặt phẳng (SAB) và (SAD) là đường trung bình của hình thang ABCD
Đáp án chính xác
Trả lời:
Chọn D
+Hình chóp S. ABCD có 4 mặt bên là (SAB); (SBC) ; (SCD) và (SAD): Do đó A đúng.
+ Tìm giao tuyến của hai mp( SAC) và (SBD)
S là điểm chung thứ nhất
Gọi O là giao điểm của AC và BD.
là điểm chung thứ hai
=> giao tuyến của ( SAC) và (SBD) là SO.
Do đó B đúng.
+ Tương tự, ta có giao tuyến của mặt phẳng (SAD) và ( SBC) là SI ( I là giao điểm của AD và BC). Do đó C đúng.
+ Giao tuyến của ( SAB) và (SAD) là SA mà SA không phải là đường trung bình của hình thang ABCD.
Do đó D sai.====== **** mời các bạn xem câu tiếp bên dưới **** =====
- Cho hình chóp S. ABCD có đáy là hình thang AB// CD. Gọi I là giao điểm của AC và BD. Trên cạnh SB lấy điểm M . Tìm giao tuyến của mặt phẳng (ADM) và (SAC)?
Câu hỏi:
Cho hình chóp S. ABCD có đáy là hình thang AB// CD. Gọi I là giao điểm của AC và BD. Trên cạnh SB lấy điểm M . Tìm giao tuyến của mặt phẳng (ADM) và (SAC)?
A. SI
B. AE với E là giao điểm của DM và SI.
Đáp án chính xác
C. DM
D. DE với E là giao điểm của DM và SI.
Trả lời:
Ta có A là điểm chung thứ nhất của (ADM) và (SAC).Trong mặt phẳng (BSD), gọi giao điểm của SI và DM là E.Ta có:+ E thuộc SI mà suy ra .+ E thuộc DM mà suy ra .Do đó E là điểm chung thứ hai của (ADM) và (SAC).Vậy AE là giao tuyến của (ADM) và (SAC).Chọn B.
====== **** mời các bạn xem câu tiếp bên dưới **** =====
- Cho tứ diện ABCD và điểm M thuộc miền trong của tam giác ACD. Gọi I và J lần lượt là 2 điểm trên cạnh BC và BD sao cho IJ không song song với CD. Gọi H và K lần lượt là giao điểm của IJ và CD; MH và AC. giao tuyến của 2 mặt phẳng (ACD) và (IJM) là
Câu hỏi:
Cho tứ diện ABCD và điểm M thuộc miền trong của tam giác ACD. Gọi I và J lần lượt là 2 điểm trên cạnh BC và BD sao cho IJ không song song với CD. Gọi H và K lần lượt là giao điểm của IJ và CD; MH và AC. giao tuyến của 2 mặt phẳng (ACD) và (IJM) là
A. KI
B. KJ
C. MI
D. MH
Đáp án chính xác
Trả lời:
+ Xét hai mp ( ACD) và (IJM) có:
nên M là điểm chung thứ nhất
nên H là điểm chung thứ hai
Vậy giao tuyến của 2 mặt phẳng (ACD) và ( IJM) là MH
Chọn D.====== **** mời các bạn xem câu tiếp bên dưới **** =====
- Cho tứ diện ABCD. Gọi M; N lần lượt là trung điểm của AC và BC. Trên đoạn BD lấy điểm P sao cho BP= 2 PD. Giao điểm của CD và mp (MNP) là giao điểm của:
Câu hỏi:
Cho tứ diện ABCD. Gọi M; N lần lượt là trung điểm của AC và BC. Trên đoạn BD lấy điểm P sao cho BP= 2 PD. Giao điểm của CD và mp (MNP) là giao điểm của:
A. CD và NP
Đáp án chính xác
B. CD và MN
C. CD và MP
D. CD và AP
Trả lời:
Chọn mặt phẳng phụ chứa CD là (BCD)Do NP không song song CD nên NP cắt CD tại EĐiểm Vậy tại E.Chọn A
====== **** mời các bạn xem câu tiếp bên dưới **** =====