Câu hỏi:
Hai người ngang tài ngang sức tranh chức vô địch của một cuộc thi cờ vua. Người dành chiến thắng là người đầu tiên thắng được 5 ván cờ. Tại thời điểm người chơi thứ nhất đã thắng 4 ván và người chơi thứ hai mới thắng 2 ván (không có ván nào hòa). Xác suất để người chơi thứ nhất dành chiến thắng là:
A. 7/8
B. 4/5
C. 3/4
Đáp án chính xác
D. 1/2
Trả lời:
Để cuộc thi kết thúc thì cần tối đa thêm 3 ván đấu nữa diễn ra (để nếu người chơi thứ hai thắng liên tiếp 3 ván nữa thì mới dành chiến thắng).
Tại thời điểm người chơi thứ nhất đã thắng 4 ván và người chơi thứ hai mới thắng 2 ván tức là 2 người đã chơi được 6 ván.
Khi đó xảy ra các trường hợp sau:
• Ván thứ bảy: người thứ nhất thắng. Khi đó người thứ nhất thắng đủ 5 ván, người thứ hai mới thắng 2 ván nên cuộc thi dừng lại. Kết quả chung cuộc người thứ nhất dành chiến thắng.
• Ván thứ bảy: người thứ nhất thua, tiếp tục ván thứ tám thì người thứ nhất thắng. Khi đó người thứ nhất thắng đủ 5 ván , người thứ hai mới thắng 3 ván nên cuộc thi dừng lại. Kết quả chung cuộc người thứ nhất dành chiến thắng.
• Ván thứ bảy và ván thứ tám người thứ nhất thua, ván thứ chín người thứ nhất thắng. Khi đó người thứ nhất thắng đủ 5 ván, người thứ hai mới thắng 4 ván nên cuộc thi dừng lại. Kết quả chung cuộc người thứ nhất dành chiến thắng.
• Ván thứ bảy, ván thứ tám và ván thứ chín người thứ nhất đều thua. Khi đó người thứ nhất thắng 4 ván, người thứ hai đã thắng 5 ván nên cuộc thi dừng lại. Kết quả chung cuộc người thứ hai dành chiến thắng.
Trong 4 trường hợp trên chỉ có 3 trường hợp đầu là người thứ nhất dành chiến thắng. Vậy xác suất cần tìm là 3/4
Ta chọn phương án C.
====== **** mời các bạn xem câu tiếp bên dưới **** =====
- Chọn khẳng định sai trong các khẳng định sau:
Câu hỏi:
Chọn khẳng định sai trong các khẳng định sau:
A. Phép thử ngẫu nhiên (gọi tắt là phép thử) là một hoạt động mà ta không thể biết trước được kết quả của nó;
B. Tập hợp tất cả các kết quả có thể có của phép thử ngẫu nhiên được gọi là không gian mẫu;
C. Với mọi biến cố A, 0 ≤ P(A) ≤ 1;
D. Xác suất của mỗi biến cố đo lường xảy ra của biến cố đó. Biến cố có khả năng xảy ra càng cao thì xác suất của nó càng xa 1.
Đáp án chính xác
Trả lời:
Các khẳng định A, B, C đúng, khẳng định D sai, vì xác suất của mỗi biến cố đo lường xảy ra của biến cố đó. Biến cố có khả năng xảy ra càng cao thì xác suất của nó càng gần 1.
Ta chọn phương án D.====== **** mời các bạn xem câu tiếp bên dưới **** =====
- Xúc xắc có 6 mặt đánh số chấm từ 1 đến 6 chấm. Không gian mẫu của 1 lần tung xúc xắc là:
Câu hỏi:
Xúc xắc có 6 mặt đánh số chấm từ 1 đến 6 chấm. Không gian mẫu của 1 lần tung xúc xắc là:
A. = {1; 2; 3; 4; 5; 6};
Đáp án chính xác
B. = 1; 2; 3; 4; 5; 6;
C. = {1}; {2}; {3}; {4}; {5}; {6};
D. = ∅.
Trả lời:
Xúc xắc có 6 mặt đánh số chấm từ 1 đến 6 chấm.
Không gian mẫu của 1 lần tung xúc xắc là = {1; 2; 3; 4; 5; 6}.
Ta chọn phương án A.====== **** mời các bạn xem câu tiếp bên dưới **** =====
- Tung xúc xắc 5 lần sẽ có không gian mẫu gồm bao nhiêu cách xuất hiện mặt của xúc xắc?
Câu hỏi:
Tung xúc xắc 5 lần sẽ có không gian mẫu gồm bao nhiêu cách xuất hiện mặt của xúc xắc?
A. 6!;
Đáp án chính xác
B. 30;
C. 65
D. vô số.
Trả lời:
Tung xúc xắc 1 lần sẽ có không gian mẫu gồm 6 cách xuất hiện mặt của xúc xắc.
Tung xúc xắc 2 lần sẽ có không gian mẫu gồm 6.6 = 36 cách xuất hiện mặt của xúc xắc.
…
Tung xúc xắc 5 lần sẽ có không gian mẫu gồm 6.6.6.6.6 = 65 cách xuất hiện mặt của xúc xắc.
Ta chọn phương án C.====== **** mời các bạn xem câu tiếp bên dưới **** =====
- Chọn khẳng định đúng trong các khẳng định sau:
Câu hỏi:
Chọn khẳng định đúng trong các khẳng định sau:
A. Phép thử ngẫu nhiên (gọi tắt là phép thử) là một hoạt động mà ta không thể biết trước được kết quả của nó;
B. Cho A là một biến cố. Khi đó biến cố “Không xảy ra A”, kí hiệu là , được gọi là biến cố đối của A;
C. P( ) = 1, P(∅) = 0;
D. Cả A, B, C đều đúng.
Đáp án chính xác
Trả lời:
Cả 3 khẳng định A, B, C đều đúng.
Ta chọn phương án D.====== **** mời các bạn xem câu tiếp bên dưới **** =====
- Một ban đại diện gồm 5 người được thành lập từ 10 người có tên sau đây: Lan, Mai, Minh, Thu, Miên, An, Hà, Thanh, Mơ, Nga. Tính xác xuất để ít nhất 3 người trong ban đại diện có tên bắt đầu bằng chữ M.
Câu hỏi:
Một ban đại diện gồm 5 người được thành lập từ 10 người có tên sau đây: Lan, Mai, Minh, Thu, Miên, An, Hà, Thanh, Mơ, Nga. Tính xác xuất để ít nhất 3 người trong ban đại diện có tên bắt đầu bằng chữ M.
A. 5/252
B. 1/24
C. 5/21
D. 11/42
Đáp án chính xác
Trả lời:
Chọn ra 5 người trong tổng số 10 người có = 252.
Ta có số phần tử của không gian mẫu là n(Ω) = 252.
Gọi A là biến cố: “Ít nhất 3 người trong ban đại diện có tên bắt đầu bằng chữ M”.
Ta xét hai trường hợp sau:
• Trường hợp 1: Có đúng 3 người tên bắt đầu bằng chữ M.
Chọn 3 người có tên bắt đầu bằng chữ M: có cách chọn.
Chọn 2 người trong 6 người còn lại: có cách chọn.
Suy ra có cách chọn.
• Trường hợp 2: Có đúng 4 người tên bắt đầu bằng chữ M.
Chọn 4 người có tên bắt đầu bằng chữ M: có cách chọn.
Chọn 1 người trong 6 người còn lại: có cách chọn.
Suy ra có cách chọn.
Do đó số kết quả thuận lợi cho biến cố A là:
n(A) = = 66.
Vậy xác suất của biến cố A là:
P(A) =
Ta chọn phương án D.====== **** mời các bạn xem câu tiếp bên dưới **** =====