Câu hỏi:
Cho định lý sau: “Hai tam giác bằng nhau thì diện tích của chúng bằng nhau”.
Cho biết giả thiết, kết luận của định lý trên.
A. “Hai tam giác bằng nhau” và “diện tích của chúng bằng nhau” đều là giả thiết của định lý;
B. “Hai tam giác bằng nhau” và “diện tích của chúng bằng nhau” đều là kết luận của định lý;
C. “Hai tam giác bằng nhau” là giả thiết, “diện tích của chúng bằng nhau” là kết luận của định lý;
Đáp án chính xác
D. “Hai tam giác bằng nhau” là kết luận, “diện tích của chúng bằng nhau” là giả thiết của định lý.
Trả lời:
Đáp án đúng là: C.
Theo lý thuyết, cho định lý P ⇒ Q.
Khi đó P là giả thiết, Q là kết luận.
Ta có:
P: “Hai tam giác bằng nhau”.
Q: “Diện tích của chúng bằng nhau”.
Do đó “Hai tam giác bằng nhau” là giả thiết, “Diện tích của chúng bằng nhau” là kết luận của định lý.
====== **** mời các bạn xem câu tiếp bên dưới **** =====
- Cho định lý sau: “Nếu một số tự nhiên chỉ chia hết cho 1 và chính nó thì số đó là số nguyên tố”.
Phát biểu định lý trên dưới dạng điều kiện đủ.
Câu hỏi:
Cho định lý sau: “Nếu một số tự nhiên chỉ chia hết cho 1 và chính nó thì số đó là số nguyên tố”.
Phát biểu định lý trên dưới dạng điều kiện đủ.A. Một số tự nhiên chỉ chia hết cho 1 và chính nó khi và chỉ khi số đó là số nguyên tố;
B. Một số tự nhiên chỉ chia hết cho 1 và chính nó là điều kiện đủ để số đó là số nguyên tố;
Đáp án chính xác
C. Một số tự nhiên là số nguyên tố là điều kiện đủ để số đó chia hết cho 1 và chính nó;
D. Điều kiện cần và đủ để một số tự nhiên chỉ chia hết cho 1 và chính nó là số đó là số nguyên tố.
Trả lời:
Đáp án đúng là: B.
Ta có:
P: “ Nếu một số tự nhiên chỉ chia hết cho 1 và chính nó”.
Q: “Số đó là số nguyên tố”.
Ta thấy định lý trên có dạng P ⇒ Q có thể được phát biểu dưới dạng điều kiện đủ như sau:
P là điều kiện đủ để có Q.
Do đó định lý đã cho được phát biểu dưới dạng điều kiện đủ là:
Một số tự nhiên chỉ chia hết cho 1 và chính nó là điều kiện đủ để số đó là số nguyên tố.====== **** mời các bạn xem câu tiếp bên dưới **** =====
- Cho các mệnh đề sau:
(1) Nếu tích của hai số a và b lớn hơn 0 thì a và b đều dương.
(2) Nếu a, b là hai số nguyên dương thì tích của chúng cũng là một số nguyên dương.
(3) Nếu tích của hai số a và b là một số nguyên âm thì trong hai số đó phải có một số nguyên dương và một số nguyên âm.
Trong các mệnh đề trên, có bao nhiêu mệnh đề là định lý?
Câu hỏi:
Cho các mệnh đề sau:
(1) Nếu tích của hai số a và b lớn hơn 0 thì a và b đều dương.
(2) Nếu a, b là hai số nguyên dương thì tích của chúng cũng là một số nguyên dương.
(3) Nếu tích của hai số a và b là một số nguyên âm thì trong hai số đó phải có một số nguyên dương và một số nguyên âm.
Trong các mệnh đề trên, có bao nhiêu mệnh đề là định lý?A. 0;
B. 1;
C. 2;
Đáp án chính xác
D. 3.
Trả lời:
Đáp án đúng là: C.
(1) Ta có ví dụ sau :
a = – 2, b = – 4
a.b = (– 2).(– 4) = 8
Từ ví dụ trên ta thấy mặc dù tích của a và b là một số dương nhưng a và b đều là các số âm.
Do đó mệnh đề (1) sai và không phải là định lý.
(2) Ta có ví dụ sau:
Tích của hai số nguyên dương là một số nguyên dương là mệnh đề đúng (tích của hai số nguyên cùng dấu là số nguyên dương).
Do đó mệnh đề (2) là định lý.
(3) Ta có ví dụ sau :
Tích của hai số nguyên khác dấu thì là số nguyên âm.
Do đó mệnh đề (3) là định lý.
Vậy có hai mệnh đề là định lý.====== **** mời các bạn xem câu tiếp bên dưới **** =====
- Cho định lý sau: “Một tam giác là tam giác đều thì tam giác đó có ba đường phân giác bằng nhau”.
Phát biểu định lý đảo của định lý trên dưới dạng điều kiện cần.
Câu hỏi:
Cho định lý sau: “Một tam giác là tam giác đều thì tam giác đó có ba đường phân giác bằng nhau”.
Phát biểu định lý đảo của định lý trên dưới dạng điều kiện cần.A. Một tam giác là tam giác đều là điều kiện cần để tam giác đó có ba đường phân giác bằng nhau;
Đáp án chính xác
B. Một tam giác có ba đường phân giác bằng nhau là điều kiện cần để tam giác đó là tam giác đều;
C. Một tam giác là tam giác đều khi và chỉ khi tam giác đó có ba đường phân giác bằng nhau;
D. Một tam giác là tam giác đều là điều kiện cần và đủ để tam giác đó có ba đường phân giác bằng nhau.
Trả lời:
Đáp án đúng là: A.
Xét mệnh đề “Một tam giác là tam giác đều thì tam giác đó có ba đường phân giác bằng nhau” ta có:
P: “Một tam giác là tam giác đều”
Q: “Tam giác đó có ba đường phân giác bằng nhau”
Định lý đảo Q ⇒ P của định lý trên được phát biểu như sau:
“Một tam giác có ba đường phân giác bằng nhau thì tam giác đó là tam giác đều”.
Xét định lý đảo trên ta có :
A: “Một tam giác có ba đường phân giác bằng nhau”.
B: “Tam giác đó là tam giác đều”.
Ta thấy định lý trên có dạng A ⇒ B có thể được phát biểu dưới dạng điều kiện cần như sau:
B là điều kiện cần để có A.
Do đó định lý đã cho được phát biểu dưới dạng điều kiện cần là:
“Một tam giác là tam giác đều là điều kiện cần để tam giác đó có ba đường phân giác bằng nhau”.====== **** mời các bạn xem câu tiếp bên dưới **** =====
- Cho định lý sau: “Nếu mỗi số nguyên a, b chia hết cho 7 thì tổng các bình phương của chúng chia hết cho 7”.
Phát biểu định lý đảo của định lý trên dưới dạng điều kiện đủ.
Câu hỏi:
Cho định lý sau: “Nếu mỗi số nguyên a, b chia hết cho 7 thì tổng các bình phương của chúng chia hết cho 7”.
Phát biểu định lý đảo của định lý trên dưới dạng điều kiện đủ.A. Mỗi số nguyên a, b chia hết cho 7 tương đương với tổng các bình phương của chúng chia hết cho 7;
B. Mỗi số nguyên a, b chia hết cho 7 là điều kiện đủ để tổng các bình phương của chúng chia hết cho 7;
C. Tổng bình phương của hai số nguyên a, b chia hết cho 7 là điều kiện đủ để mỗi số nguyên đó chia hết cho 7;
Đáp án chính xác
D. Mỗi số nguyên a, b chia hết cho 7 kéo theo tổng các bình phương của chúng chia hết cho 7.
Trả lời:
Đáp án đúng là: C.
Xét mệnh đề “Nếu mỗi số nguyên a, b chia hết cho 7 thì tổng các bình phương của chúng chia hết cho 7” ta có:
P: “Mỗi số nguyên a, b chia hết cho 7”
Q: “Tổng bình phương của chúng chia hết cho 7”
Định lý đảo Q ⇒ P của định lý trên được phát biểu như sau:
“Nếu tổng bình phương của hai số a và b chia hết cho 7 thì mỗi số nguyên đó chi hết cho 7”.
Xét định lý đảo trên ta có :
A: “Tổng bình phương của hai số a và b chia hết cho 7”.
B: “Mỗi số nguyên đó chi hết cho 7”.
Ta thấy định lý trên có dạng A ⇒ B có thể được phát biểu dưới dạng điều kiện đủ như sau:
A là điều kiện đủ để có B.
Do đó định lý đã cho được phát biểu dưới dạng điều kiện đủ là:
“Tổng bình phương của hai số nguyên a, b chia hết cho 7 là điều kiện đủ để mỗi số nguyên đó chia hết cho 7”.====== **** mời các bạn xem câu tiếp bên dưới **** =====
- Cho mệnh đề sau: “Nếu x là một số nguyên tố lớn hơn 3 thì x2 + 20 là một hợp số (tức là số có ước khác 1 và chính nó)”.
Đáp án nào dưới đây là cách viết khác với mệnh đề đã cho?
Câu hỏi:
Cho mệnh đề sau: “Nếu x là một số nguyên tố lớn hơn 3 thì x2 + 20 là một hợp số (tức là số có ước khác 1 và chính nó)”.
Đáp án nào dưới đây là cách viết khác với mệnh đề đã cho?A. Điều kiện cần để x2 + 20 là một hợp số là x là số nguyên tố lớn hơn 3;
B. Điều kiện đủ để x2 + 20 là một hợp số là x là số nguyên tố lớn hơn 3;
Đáp án chính xác
C. Điều kiện cần và đủ để x2 + 20 là một hợp số là x là số nguyên tố lớn hơn 3;
D. Cả A và B đều đúng.
Trả lời:
Đáp án đúng là: B.
Xét mệnh đề “Nếu x là một số nguyên tố lớn hơn 3 thì x2 + 20 là một hợp số” ta có:
P: “x là một số nguyên tố lớn hơn 3”.
Q: “x2 + 20 là một hợp số”.
Ta thấy mệnh đề trên có dạng P ⇒ Q có thể được phát biểu dưới dạng điều kiện cần, điều kiện đủ như sau:
+ Điều kiện cần để có P là Q.
+ Điều kiện đủ để có Q là P.
Do đó định lý đã cho được phát biểu dưới dạng điều kiện cần, điều kiện đủ lần lượt là:
+ Điều kiện cần để x là một số nguyên tố lớn hơn 3 là x2 + 20 là một hợp số.
+ Điều kiện đủ để x2 + 20 là một hợp số là x là một số nguyên tố lớn hơn 3.
Đối chiếu với các đáp án trên, ta thấy mệnh đề ở đáp án B là một cách viết khác của mệnh đề đã cho.====== **** mời các bạn xem câu tiếp bên dưới **** =====