Lý thuyết Toán lớp 11 Bài 3: Cấp số nhân
A. Lý thuyết Cấp số nhân
1. Định nghĩa
Cấp số nhân là một dãy số, trong đó kể từ số hạng thứ hai, mỗi số hạng đều là tích của số hạng ngay trước nó với một số không đổi q. Tức là:
Số q được gọi là công bội của cấp số nhân.
* Chú ý: Dãy là cấp số nhân thì .
2. Số hạng tổng quát
Nếu một cấp số nhân có số hạng đầu và công bội q thì số hạng tổng quát của nó được xác định bởi công thức
3. Tổng của n số hạng đầu của một cấp số nhân
Cho cấp số nhân với công bội . Đặt . Khi đó
B. Bài tập Cấp số nhân
Bài 1. Trong các dãy số sau, dãy số nào là cấp số nhân? Vì sao?
a) –2, 4, –8, 16, –32, 64, –128, 256.
b) 1, 4, 9, 16, 25, 36, 49, 64, 81, 100.
Hướng dẫn giải
a) Từ số hạng thứ hai của dãy số ta thấy số hạng sau gấp –2 lần số hạng trước của dãy.
Vì vậy dãy –2, 4, –8, 16, –32, 64, –128, 256 là cấp số nhân với số hạng đầu u1 = –2 và công bội q = –2.
b) Ta có nên dãy 1, 4, 9, 16, 25, 36, 49, 64, 81, 100 không phải là cấp số nhân.
Bài 2. Cho dãy số (un) có un = (–1)n+1 . 32n+1. Chứng minh dãy (un) là một cấp số nhân. Chỉ rõ u1 và công bội q.
Hướng dẫn giải
Ta xét tỉ số:
.
Suy ra dãy số (un) là một cấp số nhân có công bội q = –9 và u1 = (–1)1+1 . 32.1+1 = 27.
Vậy u1 = 27 và q = –9.
Bài 3. Cho cấp số nhân (un) có u5 = 8 và u11 = 512.
a) Tính số hạng đầu u1 và công bội q của cấp số nhân (biết công bội q > 0).
b) Tính u20 và S20.
Hướng dẫn giải
a) Ta có
Do q > 0 nên (do q > 0).
Thay q = 2 trở lại hệ ta được u1 = .
Vậy cấp số nhân đã cho có u1 = và q = 2.
b) Ta có u20 = u1.q20 – 1 = u1.q19 = .
.
Vậy u20 = 262144 và .
Xem thêm các bài tóm tắt lý thuyết Toán lớp 11 Cánh diều hay, chi tiết khác:
Lý thuyết Bài 2: Cấp số cộng
Lý thuyết Bài 3: Cấp số nhân
Lý thuyết Bài 1: Giới hạn của dãy số
Lý thuyết Bài 2: Giới hạn của hàm số
Lý thuyết Bài 3: Hàm số liên tục
Lý thuyết Bài 1: Đường thẳng và mặt phẳng trong không gian
Xem thêm các bài tóm tắt lý thuyết chương Toán lớp 11 Cánh diều hay, chi tiết khác:
Lý thuyết Chương 1: Hàm số lượng giác và phương trình lượng giác
Lý thuyết Chương 2: Dãy số. Cấp số cộng. Cấp số nhân
Lý thuyết Chương 3: Giới hạn. Hàm số liên tục
Lý thuyết Chương 4: Đường thẳng và mặt phẳng trong không gian. Quan hệ song song