Câu hỏi:
Cho hình thoi ABCD cạnh 5 và . Tính: .
A. 10;
Đáp án chính xác
B. ;
C. 5;
D. .
Trả lời:
Hướng dẫn giải:
Đáp án đúng là: A.
Ta có: (áp dụng quy tắc hình bình hành)
Xét tam giác ABC có:
AB = BC (do ABCD là hình thoi)
Do đó, tam giác ABC là tam giác đều
⇒ AC = AB = BC = 5
Vậy .
====== **** mời các bạn xem câu tiếp bên dưới **** =====
- Cho tam giác đều ABC cạnh 4. Vectơ −12BC→ có độ dài là.
Câu hỏi:
Cho tam giác đều ABC cạnh 4. Vectơ có độ dài là.
A. 2
Đáp án chính xác
B. 4
C. 3
D. 6
Trả lời:
Hướng dẫn giải:
Đáp án đúng là: A.
Do tam giác ABC đều cạnh 4 nên: AB = AC = BC = 4
⇒ = 4
Ta có: .====== **** mời các bạn xem câu tiếp bên dưới **** =====
- Cho hình vuông ABCD tâm O cạnh 3. Ta có 12AC→+12DB→ = ?
Câu hỏi:
Cho hình vuông ABCD tâm O cạnh 3. Ta có = ?
A. 2
B. 4
C. 3
Đáp án chính xác
D. 6
Trả lời:
Hướng dẫn giải:
Đáp án đúng là: C.
Do O là tâm của hình vuông ABCD nên O là trung điểm của AC và BD nên ta có:
; .
.====== **** mời các bạn xem câu tiếp bên dưới **** =====
- Cho hình thoi ABCD cạnh 5 và ABC^=60o. Tính: 2AB→−2AD→.
Câu hỏi:
Cho hình thoi ABCD cạnh 5 và . Tính: .
A. 10;
B. ;
C. 5;
D. .
Đáp án chính xác
Trả lời:
Hướng dẫn giải:
Đáp án đúng là: D.
Ta có: (hiệu hai vectơ).
Gọi O là giao hai đường chéo của hình thoi, khi đó O là trung điểm của AC và BD. Hơn nữa hai đường chéo này vuông góc với nhau tại O.
Xét tam giác ABC có:
AB = BC (do ABCD là hình thoi)
Do đó, tam giác ABC là tam giác đều
⇒ AC = AB = BC = 5
Xét tam giác AOB vuông tại O, theo định lí Pytahgore ta có:
Vậy .====== **** mời các bạn xem câu tiếp bên dưới **** =====
- Cho hình chữ nhật ABCD tâm O có AB = 4, AD = 3. Tính độ dài vectơ 12DB→.
Câu hỏi:
Cho hình chữ nhật ABCD tâm O có AB = 4, AD = 3. Tính độ dài vectơ .
A. 5
B. 2,5
Đáp án chính xác
C. 1,5
D. 2
Trả lời:
Hướng dẫn giải:
Đáp án đúng là: B.
Xét tam giác ABD vuông tại A (do ABCD là hình chữ nhật)
Áp dụng định lí Pythagore ta có:
BD2 = AB2 + AD2 = 42 + 32 = 25 ⇔ BD = 5
Có: .====== **** mời các bạn xem câu tiếp bên dưới **** =====
- Cho tam giác đều ABC cạnh a. Điểm M là trung điểm BC. Tính: 12CB→+MA→.
Câu hỏi:
Cho tam giác đều ABC cạnh a. Điểm M là trung điểm BC. Tính: .
A. a;
Đáp án chính xác
B. 3a;
C. 2a;
D. 4a.
Trả lời:
Hướng dẫn giải:
Đáp án đúng là: A.
Do M là trung điểm của BC nên ta có:
Do đó, ta có:
Vậy .====== **** mời các bạn xem câu tiếp bên dưới **** =====