Câu hỏi:
Cho a, b, c là độ dài ba cạnh của một tam giác. Chứng minh rằng:
b2x2 – (b2 + c2 – a2)x + c2 > 0, ∀x ∈ ℝ.
Trả lời:
Vì a, b, c là độ dài ba cạnh của một tam giác nên a, b, c > 0.
Coi f(x) = b2x2 – (b2 + c2 – a2)x + c2 là một tam thức bậc hai ẩn x dạng f(x) = Ax2 + Bx + C.
Xét phương trình bậc hai b2x2 – (b2 + c2 – a2)x + c2 = 0 có:
A = b2 > 0 (vì b là độ dài cạnh của tam giác)
∆ = B2 – 4AC = [– (b2 + c2 – a2)]2 – 4.b2.c2
= (b2 + c2 – a2)2 – (2bc)2
= (b2 + c2 – a2 – 2bc)(b2 + c2 – a2 + 2bc)
= [(b – c)2 – a2][(b + c)2 – a2]
= (b – c – a)(b – c + a)(b + c – a)(b + c + a)
Vì a, b, c là ba cạnh của tam giác nên ta có:
a + b – c > 0
b + c – a > 0
b + c + a > 0
b – c – a = b – (c + a) < 0
Do đó ∆ < 0.
Vậy b2x2 – (b2 + c2 – a2)x + c2 > 0, ∀x ∈ ℝ (điều cần phải chứng minh).
====== **** mời các bạn xem câu tiếp bên dưới **** =====
- Xét dấu các tam thức bậc hai sau:
a) f(x) = –x2 + 6x + 7;
Câu hỏi:
Xét dấu các tam thức bậc hai sau:
a) f(x) = –x2 + 6x + 7;Trả lời:
a)
f(x) = –x2 + 6x + 7 có a = –1 < 0
f(x) = 0 ⇔ –x2 + 6x + 7 = 0
Xét phương trình bậc hai –x2 + 6x + 7 = 0 có ∆ = b2 – 4ac = 62 – 4.(–1).7 = 64 > 0
Do đó, phương trình có hai nghiệm phân biệt:
Vậy f(x) = –x2 + 6x + 7 < 0 với x ∈ (–∞; –1) ∪ (7; +∞), f(x) = –x2 + 6x + 7 > 0 với x ∈ (–1; 7).====== **** mời các bạn xem câu tiếp bên dưới **** =====
- b) g(x) = 3×2 – 2x + 2;
Câu hỏi:
b) g(x) = 3x2 – 2x + 2;
Trả lời:
b)
g(x) = 3x2 – 2x + 2 có a = 3 > 0
g(x) = 0 ⇔ 3x2 – 2x + 2 = 0
Xét phương trình bậc hai 3x2 – 2x + 2 = 0 có ∆ = b2 – 4ac = (–2)2 – 4.3.2 = –20 < 0.
Vậy g(x) = 3x2 – 2x + 2 > 0 với x ∈ ℝ.====== **** mời các bạn xem câu tiếp bên dưới **** =====
- c) h(x) = –16×2 + 24x – 9;
Câu hỏi:
c) h(x) = –16x2 + 24x – 9;
Trả lời:
c)
h(x) = –16x2 + 24x – 9 có a = –16 < 0
h(x) = 0 ⇔ –16x2 + 24x – 9 = 0
Xét phương trình bậc hai –16x2 + 24x – 9 = 0 có ∆ = b2 – 4ac = 242 – 4.(–16).(–9) = 0
Vậy phương trình có nghiệm kép: .
Vậy h(x) < 0 với và h(x) = 0 tại .====== **** mời các bạn xem câu tiếp bên dưới **** =====
- d) k(x) = 2×2 – 6x + 1.
Câu hỏi:
d) k(x) = 2x2 – 6x + 1.
Trả lời:
d)
k(x) = 2x2 – 6x + 1 có a = 2 > 0
k(x) = 0 ⇔ 2x2 – 6x + 1 = 0
Xét phương trình bậc hai 2x2 – 6x + 1 = 0 có ∆ = b2 – 4ac = (–6)2 – 4.2.1 = 28 > 0
Do đó, phương trình có hai nghiệm phân biệt:
Vậy k(x) < 0 với x ∈và k(x) > 0 với x ∈.====== **** mời các bạn xem câu tiếp bên dưới **** =====
- Giải các bất phương trình sau:
a) 3×2 – 36x + 108 > 0;
Câu hỏi:
Giải các bất phương trình sau:
a) 3x2 – 36x + 108 > 0;Trả lời:
a)
Xét tam thức bậc hai f(x) = 3x2 – 36x + 108 có a = 3 > 0
Phương trình bậc hai 3x2 – 36x + 108 = 0 có ∆ = b2 – 4ac = (–36)2 – 4.3.108 = 0
Do đó, phương trình có nghiệm kép x = 6.
Do đó, f(x) = 3x2 – 36x + 108 > 0 với x ∈ ℝ\{6}
Hay tập nghiệm của bất phương trình 3x2 – 36x + 108 > 0 là S = ℝ\{6}.====== **** mời các bạn xem câu tiếp bên dưới **** =====