Câu hỏi:
Cho hình bình hành ABCD có AB=2AD. Gọi E và F theo thứ tự là trung điểm của AB và CD. Hình bình hành ABCD nói trên có thêm điều kiện gì thì EMFN là hình vuông.
Trả lời:
Ta có: Hình chữ nhật EMFN là hình thoi ⇒ ME = MFME = 1/2 DE (tính chất hình thoi)MF = 1/2 AF (tính chất hình thoi)Suy ra: DE = AF⇒ Tứ giác AEFD là hình vuông (vì hình thoi có 2 đường chéo bằng nhau)⇒ A = ⇒ Hình bình hành ABCD là hình chữ nhật.Ngược lại: ABCD là hình chữ nhật ⇒ A = Hình thoi AEFD có A = nên AEFD là hình vuông⇒ AF = DE ⇒ ME = MF (tính chất hình vuông)Hình chữ nhật EMFN là hình vuông (vì có 2 cạnh kề bằng nhau)Vậy hình chữ nhật EMFN là hình vuông nếu ABCD là hình chữ nhật có AB = 2AD.
====== **** mời các bạn xem câu tiếp bên dưới **** =====
- Cho tứ giác ABCD. Gọi E, F, G, H theo thứ tự là trung điểm của AB, BC, CD, DA. Tìm điều kiện của tứ giác ABGD để EFGH là: Hình chữ nhật
Câu hỏi:
Cho tứ giác ABCD. Gọi E, F, G, H theo thứ tự là trung điểm của AB, BC, CD, DA. Tìm điều kiện của tứ giác ABGD để EFGH là: Hình chữ nhật
Trả lời:
* Ta có EF là đường trung bình của ABCSuy ra: EF //AC và EF = 1/2 AC (1)* Trong ADC có HG là đường trung bìnhSuy ra: HG // AC và HG = 1/2 AC (2)Từ (l) và (2) suy ra EF // HG và EF = HGVậy tứ giác EFGH là hình bình hành.Tứ giác EFGH là hình chữ nhật ⇔ EH ⊥ EF ⇔ AC ⊥ BD
====== **** mời các bạn xem câu tiếp bên dưới **** =====
- Cho tứ giác ABCD. Gọi E, F, G, H theo thứ tự là trung điểm của AB, BC, CD, DA. Tìm điều kiện của tứ giác ABGD để EFGH là: Hình thoi
Câu hỏi:
Cho tứ giác ABCD. Gọi E, F, G, H theo thứ tự là trung điểm của AB, BC, CD, DA. Tìm điều kiện của tứ giác ABGD để EFGH là: Hình thoi
Trả lời:
* Ta có EF là đường trung bình của ABCSuy ra: EF //AC và EF = 1/2 AC (1)* Trong ADC có HG là đường trung bìnhSuy ra: HG // AC và HG = 1/2 AC (2)Từ (l) và (2) suy ra EF // HG và EF = HGVậy tứ giác EFGH là hình bình hành.Tứ giác EFGH là hình thoi ⇔ EH = EF ⇔ AC = BD
====== **** mời các bạn xem câu tiếp bên dưới **** =====
- Cho tứ giác ABCD. Gọi E, F, G, H theo thứ tự là trung điểm của AB, BC, CD, DA. Tìm điều kiện của tứ giác ABGD để EFGH là: Hình vuông
Câu hỏi:
Cho tứ giác ABCD. Gọi E, F, G, H theo thứ tự là trung điểm của AB, BC, CD, DA. Tìm điều kiện của tứ giác ABGD để EFGH là: Hình vuông
Trả lời:
====== **** mời các bạn xem câu tiếp bên dưới **** =====
- Cho tam giác ABC vuông tại A, điểm D là trung điểm của BC. Gọi M là điểm đối xứng với D qua AB, E là giao điểm của DM và AB. Gọi N là điểm đối xứng với D qua AC, F là giao điểm của DN và AC. Tứ giác AEDF là hình gì? Vì sao?
Câu hỏi:
Cho tam giác ABC vuông tại A, điểm D là trung điểm của BC. Gọi M là điểm đối xứng với D qua AB, E là giao điểm của DM và AB. Gọi N là điểm đối xứng với D qua AC, F là giao điểm của DN và AC. Tứ giác AEDF là hình gì? Vì sao?
Trả lời:
Điểm M và điểm D đối xứng qua trục ABSuy ra AB là đường trung trực của đoạn thẳng MD⇒ AB ⊥ DM ⇒ (AED) = Điểm D và điểm N đối xứng qua trục AC ⇒ AC là đường trung trực của đoạn thẳng DN ⇒ AC ⊥ DN ⇒ (AFD) = Mà (EAF) = (gt). Vậy tứ giác AEDF là hình chữ nhật (vì có 3 góc vuông).
====== **** mời các bạn xem câu tiếp bên dưới **** =====
- Cho tam giác ABC vuông tại A, điểm D là trung điểm của BC. Gọi M là điểm đối xứng với D qua AB, E là giao điểm của DM và AB. Gọi N là điểm đối xứng với D qua AC, F là giao điểm của DN và AC. Các tứ giác ADBM, ADCN
Câu hỏi:
Cho tam giác ABC vuông tại A, điểm D là trung điểm của BC. Gọi M là điểm đối xứng với D qua AB, E là giao điểm của DM và AB. Gọi N là điểm đối xứng với D qua AC, F là giao điểm của DN và AC. Các tứ giác ADBM, ADCN
Trả lời:
Tứ giác AEDF là hình chữ nhật⇒ DE // AC; DF // ABTrong ABC, ta có: DB = DC (gt)Mà DE // ACSuy ra: AE = EB (tính chất đường trung bình của tam giác)Lại có: DF // AB và DB = DCSuy ra: AF = FC (tính chất đường trung bình của tam giác)Xét tứ giác ADBM, ta có: AE = EB (chứng minh trên)ED = EM (vì AB là trung trực DM)Suy ra tứ giác ADBM là hình bình hành (vì có 2 đường chéo cắt nhau tại trung điểm của mỗi đường)Mặt khác: AB ⊥ DMVậy hình bình hành ADBM là hình thoi (vì có hai đường chéo vuông góc)Xét tứ giác ADCN, ta có: AF = FC (chứng minh trên)DF = FN (vì AC là đường trung trực DN)Suy ra tứ giác ADCN là hình bình hành (vì có hai đường chéo cắt nhau tại trung điểm của mỗi đường).Lại có: AC ⊥ DNVậy hình bình hành ADCN là hình thoi (vì có hai đường chéo cắt nhau tại trung điểm của mỗi đường)
====== **** mời các bạn xem câu tiếp bên dưới **** =====