Câu hỏi:
Cho hình vẽ dưới đây:
Số đo của \(\widehat {BAC}\) trong hình vẽ trên bằng:
A. 20°;
B. 40°;
Đáp án chính xác
C. 80°;
D. 120°.
Trả lời:
Đáp án đúng là: B
Xét tam giác ABD và tam giác ACD có:
AB = AC, BD = CD, AD là cạnh chung
Suy ra DABD = DACD (c.c.c)
Do đó \(\widehat {BAD} = \widehat {CAD},\widehat B = \widehat C,\widehat {BDA} = \widehat {CDA}\) (các cặp cạnh tương ứng)
Nên \(\widehat {BDA} = \widehat {CDA} = 60^\circ \)
Xét tam giác ABD có: \(\widehat {BAD} + \widehat B + \widehat {BDA} = 180^\circ \) (tổng ba góc trong một tam giác)
Suy ra \(\widehat {BAD} = 180^\circ – \widehat B – \widehat {BDA}\)
Hay \(\widehat {BAD} = 180^\circ – 100^\circ – 60^\circ = 20^\circ \)
Mà \(\widehat {BAD} = \widehat {CAD}\) nên \(\widehat {BAD} = \widehat {CAD} = 20^\circ \)
Mặt khác \(\widehat {BAC} = \widehat {BAD} + \widehat {CAD} = 20^\circ + 20^\circ = 40^\circ \)
Vậy số đo của \(\widehat {BAC}\) bằng 40°.
====== **** mời các bạn xem câu tiếp bên dưới **** =====