Câu hỏi:
Gọi \(S\) là tập hợp các giá trị thực của tham số \(m\) sao cho giá trị lớn nhất của hàm số \(y = \left| {\frac{{{x^2} + mx + m}}{{x + 1}}} \right|\) trên \(\left[ {1;2} \right]\) bằng 2. Số phần tử của \(S\) là
A. 1.
B. 4.
C. 3.
D. 2.
Đáp án chính xác
Trả lời:
Đáp án D.
Đặt \(y = h\left( x \right) = \left| {\frac{{{x^2} + mx + m}}{{x + 1}}} \right|\)
Xét hàm số \(f\left( x \right) = \frac{{{x^2} + mx + m}}{{x + 1}} = \frac{{{x^2}}}{{x + 1}} + m,\) ta có: \(f’\left( x \right) = \frac{{{x^2} + 2x}}{{{{\left( {x + 1} \right)}^2}}} >0,\forall x \in \left[ {1;2} \right].\)
Suy ra hàm số \(f\left( x \right)\) đồng biến trên đoạn \(\left[ {1;2} \right].\)
\(\mathop {\min }\limits_{\left[ {1;2} \right]} f\left( x \right) = f\left( 1 \right) = \frac{1}{2} + m,\mathop {\max }\limits_{\left[ {1;2} \right]} f\left( x \right) = f\left( 2 \right) = \frac{4}{3} + m.\)
Nếu \(\frac{1}{2} + m >0 \Leftrightarrow m >- \frac{1}{2}\) thì \(\mathop {\max }\limits_{\left[ {1;2} \right]} h\left( x \right) = m + \frac{4}{3},\) suy ra: \(\frac{4}{3} + m = 2 \Leftrightarrow m = \frac{2}{3}\) (thỏa mãn).
Nếu \(\frac{4}{3} + m < 0 \Leftrightarrow m < – \frac{4}{3}\) thì \(\mathop {\max }\limits_{\left[ {1;2} \right]} h\left( x \right) = \left| {m + \frac{1}{2}} \right|,\) suy ra: \(\left| {m + \frac{1}{2}} \right| = 1 \Leftrightarrow \left[ \begin{array}{l}m = \frac{3}{2}\left( l \right)\\m = – \frac{5}{2}\end{array} \right..\)
Nếu \(\frac{1}{2} + m < 0 < \frac{4}{3} + m \Leftrightarrow – \frac{4}{3} < m < – \frac{1}{2}\) thì: \(\left| {m + \frac{1}{2}} \right| \le \left| m \right| + \frac{1}{2} \le \frac{4}{3} + \frac{1}{2} = \frac{{11}}{6} < 2,\) suy ra:
\(\left| {m + \frac{4}{3}} \right| = 2 \Leftrightarrow \left[ \begin{array}{l}m + \frac{4}{3} = 2\\m + \frac{4}{3} = – 2\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}m = \frac{2}{3}\\m = – \frac{{10}}{3}\end{array} \right.\) (không thỏa mãn).
Vậy có hai giá trị \(m\) thỏa mãn: \(m = – \frac{5}{2}\) và \(m = \frac{2}{3}.\)
====== **** mời các bạn xem câu tiếp bên dưới **** =====
- Cho hàm số \(y = f\left( x \right)\) có bảng biến thiên như sau
Biết giá trị lớn nhất và giá trị nhỏ nhất của hàm số lần lượt là \(M,m.\) Giá trị biểu thức \(P = {M^2} + {m^2}\) bằng
Câu hỏi:
Cho hàm số \(y = f\left( x \right)\) có bảng biến thiên như sau
Biết giá trị lớn nhất và giá trị nhỏ nhất của hàm số lần lượt là \(M,m.\) Giá trị biểu thức \(P = {M^2} + {m^2}\) bằngA.\(P = \frac{1}{2}.\)
Đáp án chính xác
B.\(P = 1.\)
C.\(P = \frac{1}{4}.\)
D. \(P = 2.\)
Trả lời:
Đáp án A.
Từ bảng biến thiên, ta thấy \(M = \frac{1}{2},m = – \frac{1}{2}.\)
Vậy \(P = {M^2} + {m^2} = {\left( {\frac{1}{2}} \right)^2} + {\left( { – \frac{1}{2}} \right)^2} = \frac{1}{2}.\)====== **** mời các bạn xem câu tiếp bên dưới **** =====
- Cho cấp số nhân \(\left( {{u_n}} \right)\) có \({u_1} = 2\) và công bội \(q = 2.\) Tính \({u_3}?\)
Câu hỏi:
Cho cấp số nhân \(\left( {{u_n}} \right)\) có \({u_1} = 2\) và công bội \(q = 2.\) Tính \({u_3}?\)
A.\({u_3} = 8.\)
Đáp án chính xác
B.\({u_3} = 4.\)
C.\({u_3} = 18.\)
D. \({u_3} = 6.\)
Trả lời:
Đáp án A.
Ta có: \({u_3} = {u_1}.{q^2} = {2.2^2} = 8.\)====== **** mời các bạn xem câu tiếp bên dưới **** =====
- Cho hàm số \(y = f\left( x \right)\) có bảng xét dấu như sau:
Hàm số \(y = f\left( x \right)\) đồng biến trong khoảng nào dưới đây?
Câu hỏi:
Cho hàm số \(y = f\left( x \right)\) có bảng xét dấu như sau:
Hàm số \(y = f\left( x \right)\) đồng biến trong khoảng nào dưới đây?A.\(\left( { – 2;0} \right).\)
Đáp án chính xác
B.\(\left( {0; + \infty } \right).\)
C.\(\left( { – \infty ; – 2} \right).\)
D. \(\left( { – 3;1} \right).\)
Trả lời:
Đáp án A.
\(f’\left( x \right) >0\) với \(x \in \left( { – 2;0} \right)\) nên hàm số đồng biến trên khoảng \(\left( { – 2;0} \right).\)====== **** mời các bạn xem câu tiếp bên dưới **** =====
- Cho khối chóp \(S.ABC\) có đáy \(ABC\) là tam giác đều cạnh \(a\) và hai mặt bên \(\left( {SAB} \right),\left( {SAC} \right)\) cùng vuông góc với mặt phẳng đáy. Tính thể tích của khối chóp \(S.ABC\) biết \(SC = a\sqrt 3 .\)
Câu hỏi:
Cho khối chóp \(S.ABC\) có đáy \(ABC\) là tam giác đều cạnh \(a\) và hai mặt bên \(\left( {SAB} \right),\left( {SAC} \right)\) cùng vuông góc với mặt phẳng đáy. Tính thể tích của khối chóp \(S.ABC\) biết \(SC = a\sqrt 3 .\)
A.\(\frac{{2{a^3}\sqrt 6 }}{9}.\)
B.\(\frac{{{a^3}\sqrt 6 }}{{12}}.\)
Đáp án chính xác
C.\(\frac{{{a^3}\sqrt 3 }}{4}.\)
D. \(\frac{{{a^3}\sqrt 3 }}{2}.\)
Trả lời:
Đáp án B.
\(ABC\) là tam giác đều cạnh \(a\) nên \({S_{\Delta ABC}} = \frac{{{a^2}\sqrt 3 }}{4}.\)
Hai mặt bên \(\left( {SAB} \right),\left( {SAC} \right)\) cùng vuông góc với mặt đáy nên \(SA \bot \left( {ABC} \right).\)
Trong tam giác vuông \(SAC\) ta có: \(SA = \sqrt {S{C^2} – A{C^2}} = \sqrt {3{a^2} – {a^2}} = a\sqrt 2 .\)
Thể tích của khối chóp \(S.ABC\) là \(V = \frac{1}{3}{S_{\Delta ABC}}.SA = \frac{1}{3}.\frac{{{a^2}\sqrt 3 }}{4}.a\sqrt 2 = \frac{{{a^3}\sqrt 6 }}{{12}}\)====== **** mời các bạn xem câu tiếp bên dưới **** =====
- Kết luận nào sau đây về tính đơn điệu của hàm số \(y = \frac{{2x + 1}}{{x – 1}}\) là đúng?
Câu hỏi:
Kết luận nào sau đây về tính đơn điệu của hàm số \(y = \frac{{2x + 1}}{{x – 1}}\) là đúng?
A. Hàm số nghịch biến trên \(\mathbb{R}\backslash \left\{ 1 \right\}.\)
B. Hàm số đồng biến trên \(\mathbb{R}\backslash \left\{ 1 \right\}.\)
C. Hàm số nghịch biến trên \(\left( { – \infty ;1} \right)\) và \(\left( {1; + \infty } \right).\)
Đáp án chính xác
D. Hàm số đồng biến trên \(\left( { – \infty ;1} \right)\) và \(\left( {1; + \infty } \right).\)
Trả lời:
Đáp án C.
Tập xác định \(D = \mathbb{R}\backslash \left\{ 1 \right\}.\)
Ta có \(y’ = – \frac{3}{{{{\left( {x – 1} \right)}^2}}} < 0\) với mọi \(x \in D.\) Suy ra, hàm số nghịch biến trên \(\left( { – \infty ;1} \right)\) và \(\left( {1; + \infty } \right).\)====== **** mời các bạn xem câu tiếp bên dưới **** =====