Câu hỏi:
Cho hàm số y = ax2 + bx + c (a ≠ 0) có đồ thị là parabol trong hình dưới. Xác định hàm số đó.
Trả lời:
Hướng dẫn giải:
Dựa vào hình vẽ, ta thấy đồ thị hàm số y = ax2 + bx + c có bề lõm hướng lên, đỉnh S(1; 1) và cắt trục tung tại điểm (0; 2).
Do đó ta có:
a > 0 (1)
\( – \frac{b}{{2a}} = 1\) (2); \( – \frac{\Delta }{{4a}} = 1 \Leftrightarrow – \frac{{{b^2} – 4ac}}{{4a}} = 1\) (3)
c = 2 (4)
Thay (4) vào (3) ta có: \( – \frac{{{b^2} – 4a.2}}{{4a}} = 1 \Leftrightarrow – {b^2} + 8a = 4a \Leftrightarrow – {b^2} + 4a = 0\) (5)
Từ (2) ta có: b = –2a (6)
Thay (6) vào (5) ta có: –(–2a)2 + 4a = 0 ⇔ –4a2 + 4a = 0
⇔ 4a(–a + 1) = 0 ⇔ \(\left[ \begin{array}{l}a = 0\,\,(L)\\a = 1\,\,(TM)\end{array} \right.\)
Với a = 1 ta có: b = –2.1 = –2
Vậy hàm số cần tìm là: y = x2 – 2x + 2.
====== **** mời các bạn xem câu tiếp bên dưới **** =====
- Cho hàm số bậc hai y = ax2 + bx + c (a ≠ 0) có đồ thị như hình dưới.
Xác định công thức của hàm số đó.
Câu hỏi:
Cho hàm số bậc hai y = ax2 + bx + c (a ≠ 0) có đồ thị như hình dưới.
Xác định công thức của hàm số đó.A. y = 2x2 – 4x – 2;
B. y = 2x2 – 4x + 2;
Đáp án chính xác
C. y = 2x2 – 4x;
D. y = 2x2 + 4x + 2.
Trả lời:
Hướng dẫn giải:
Đáp án đúng là: B.
Dựa vào hình vẽ, ta thấy đồ thị hàm số y = ax2 + bx + c có bề lõm hướng lên, đỉnh I(1; 0) và cắt trục tung tại điểm (0; 2).
Do đó ta có:
a > 0 (1)
\( – \frac{b}{{2a}} = 1\) (2); \( – \frac{\Delta }{{4a}} = 0 \Leftrightarrow \frac{{{b^2} – 4ac}}{{4a}} = 0 \Leftrightarrow {b^2} – 4ac = 0\) (3)
c = 2 (4)
Thay (4) vào (3) ta có: b2 – 4a.2 = 0 ⇔ b2 – 8a = 0 (5)
Từ (2) ta có: b = –2a (6)
Thay (6) vào (5) ta có: (–2a)2 – 8a = 0 ⇔ 4a2 – 8a = 0 ⇔ 4a(a – 2) = 0 ⇔ \(\left[ \begin{array}{l}a = 0\,\,(L)\\a = 2\,\,(TM)\end{array} \right.\)
Với a = 2 ta có: b = –2.2 = –4
Vậy hàm số y = ax2 + bx + c là y = 2x2 – 4x + 2.====== **** mời các bạn xem câu tiếp bên dưới **** =====
- Đồ thị hàm số trong hình sau là của hàm số bậc hai nào ?
Câu hỏi:
Đồ thị hàm số trong hình sau là của hàm số bậc hai nào ?
A. y = x2 + 4x + 3;
B. y = x2 – 4x + 3;
Đáp án chính xác
C. y = x2 – 4x – 3;
D. y = –x2 – 4x + 3.
Trả lời:
Hướng dẫn giải:
Đáp án đúng là: B.
Hàm số bậc hai có dạng y = ax2 + bx + c (a ≠ 0).
Dựa vào hình vẽ, ta thấy đồ thị hàm số y = ax2 + bx + c có bề lõm hướng lên, đỉnh I(2; –1) và cắt trục tung tại điểm (0; 3).
Do đó ta có:
a > 0 (1)
\( – \frac{b}{{2a}} = 2\) (2); \( – \frac{\Delta }{{4a}} = – 1 \Leftrightarrow \frac{{{b^2} – 4ac}}{{4a}} = 1 \Leftrightarrow {b^2} – 4ac = 4a\) (3)
c = 3 (4)
Thay (4) vào (3) ta có: b2 – 4a.3 = 4a ⇔ b2 – 16a = 0 (5)
Từ (2) ta có: b = –4a (6)
Thay (6) vào (5) ta có: (–4a)2 – 16a = 0 ⇔ 16a2 – 16a = 0
⇔ 16a(a – 1) = 0 ⇔ \(\left[ \begin{array}{l}a = 0\,\,(L)\\a = 1\,\,(TM)\end{array} \right.\)
Với a = 1 ta có: b = –4.1 = –4
Vậy hàm số y = ax2 + bx + c là y = x2 – 4x + 3.====== **** mời các bạn xem câu tiếp bên dưới **** =====
- Cho đồ thị hàm số y = ax2 + bx + c (a ≠ 0) trong hình vẽ sau. Xác định hàm số đó.
Câu hỏi:
Cho đồ thị hàm số y = ax2 + bx + c (a ≠ 0) trong hình vẽ sau. Xác định hàm số đó.
Trả lời:
Hướng dẫn giải:
Dựa vào hình vẽ, ta thấy đồ thị hàm số y = ax2 + bx + c có bề lõm hướng lên, đỉnh I(2; –2) và cắt trục tung tại điểm (0; 2).
Do đó ta có:
a > 0 (1)
\( – \frac{b}{{2a}} = 2\) (2); \( – \frac{\Delta }{{4a}} = – 2 \Leftrightarrow – \frac{{{b^2} – 4ac}}{{4a}} = – 2\) (3)
c = 2 (4)
Thay (4) vào (3) ta có: \( – \frac{{{b^2} – 4a.2}}{{4a}} = – 2 \Leftrightarrow – {b^2} + 8a = – 8a \Leftrightarrow – {b^2} + 16a = 0\) (5)
Từ (2) ta có: b = –4a (6)
Thay (6) vào (5) ta có: –(–4a)2 + 16a = 0 ⇔ –16a2 + 16a = 0
⇔ 16a(–a + 1) = 0 ⇔ \(\left[ \begin{array}{l}a = 0\,\,(L)\\a = 1\,\,(TM)\end{array} \right.\)
Với a = 1, ta có: b = –4.1 = –4
Do đó, hàm số cần tìm là: y = x2 – 4x + 2.====== **** mời các bạn xem câu tiếp bên dưới **** =====
- Đồ thị hàm số trong hình sau là của hàm số bậc hai nào ?
Câu hỏi:
Đồ thị hàm số trong hình sau là của hàm số bậc hai nào ?
A. y = x2 – 4x + 2;
B. y = –x2 – 4x + 2;
C. y = –x2 + 4x – 4;
Đáp án chính xác
D. y = x2 – 4x + 4.
Trả lời:
Hướng dẫn giải:
Đáp án đúng là: C.
Hàm số bậc hai có dạng y = ax2 + bx + c (a ≠ 0).
Dựa vào hình vẽ, ta thấy đồ thị hàm số y = ax2 + bx + c có bề lõm hướng xuống, đỉnh I(2; 0) và cắt trục tung tại điểm (0; – 4).
Do đó ta có:
a < 0 (1)
\( – \frac{b}{{2a}} = 2\) (2); \( – \frac{\Delta }{{4a}} = 0 \Leftrightarrow – \frac{{{b^2} – 4ac}}{{4a}} = 0 \Leftrightarrow {b^2} – 4ac = 0\) (3)
c = – 4 (4)
Thay (4) vào (3) ta có: \({b^2} – 4a.( – 4) = 0 \Leftrightarrow {b^2} + 16a = 0\) (5)
Từ (2) ta có: b = –4a (6)
Thay (6) vào (5) ta có: (–4a)2 + 16a = 0 ⇔ 16a2 + 16a = 0
⇔ 16a(a + 1) = 0 ⇔ \(\left[ \begin{array}{l}a = 0\,\,(L)\\a = – 1\,\,(TM)\end{array} \right.\)
Với a = –1 ta có: b = – 4.(– 1) = 4
Vậy hàm số y = ax2 + bx + c là y = –x2 + 4x – 4.====== **** mời các bạn xem câu tiếp bên dưới **** =====
- Cho parabol như hình dưới. Xác định hàm số đó.
Câu hỏi:
Cho parabol như hình dưới. Xác định hàm số đó.
A. y = 2x2 – 3;
B. y = x2 – 3;
Đáp án chính xác
C. y = x2 – 5;
D. y = x2 – 3x.
Trả lời:
Hướng dẫn giải:
Đáp án đúng là: B.
Gọi dạng của parabol trên là y = ax2 + bx + c (a ≠ 0).
Dựa vào hình vẽ, ta thấy đồ thị hàm số y = ax2 + bx + c có bề lõm hướng lên, đỉnh I(0; –3) và cắt trục tung tại điểm (0; –3).
Do đó ta có:
a > 0
\( – \frac{b}{{2a}} = 0\) ⇒ b = 0
c = –3
Dựa vào đồ thị ta còn thấy, đồ thị hàm số đi qua điểm (2; 1) do đó ta có:
Tại x = 2 thì y = a.22 + b.2 + c = 1
Hay 4a + 2b + c = 1
Mà b = 0, c = –3
⇒ 4a – 3 = 1
⇒ 4a = 4
⇒ a = 1 (TM)
Vậy hàm số y = ax2 + bx + c là y = x2 – 3.====== **** mời các bạn xem câu tiếp bên dưới **** =====