Bài tập Toán 9 Chương 3 Bài 5: Góc có đỉnh ở bên trong đường tròn. Góc có đỉnh ở bên ngoài đường tròn
A. Bài tập Góc có đỉnh ở bên trong đường tròn. Góc có đỉnh ở bên ngoài đường tròn
I. Bài tập trắc nghiệm
Câu 1: Cho hình vẽ dưới đây , góc BIC có số đo bằng
Số đo của góc có đỉnh bên ngoài đường tròn bằng nửa hiệu số đo hai cung bị chắn.
Chọn đáp án B
Câu 2: Cho hình vẽ dưới đây , góc DIE có số đo bằng
Lời giải:
Số đo của góc có đỉnh bên trong đường tròn bằng nửa tổng số đo hai cung bị chắn
Chọn đáp án A
Câu 3: Cho nửa đường tròn (O) đường kính AB và C là điểm trên cung nhỏ AB (cung CB nhỏ hơn cung CA). Tiếp tuyến tại C của nửa đường tròn cắt đường thẳng AB tại D. Biết tam giác ADC cân tại C. Tính góc ADC
A. 40°
B. 45°
C. 60°
D. 30°
Lời giải:
Xét nửa (O) có
Chọn đáp án D
Câu 4: Trên (O) lấy bốn điểm A, B, C, D theo thứ tự sao cho cung AB = cung BC = cung CD . Gọi I là giao điểm của BD và AC , biết Toán lớp 9 | Lý thuyết – Bài tập Toán 9 có đáp án . Tính Toán lớp 9 | Lý thuyết – Bài tập Toán 9 có đáp án
A. 20°
B. 15°
C. 35°
D. 30°
Lời giải:
Chọn đáp án B
Câu 5: Cho đường tròn (O) và dây AB; AC cách đều tâm. Trên cung nhỏ AC lấy điểm M. Gọi S là giao điểm của AM và BC. Góc nào bằng góc
Lời giải:
Chọn đáp án C.
Câu 6: Cho đường trò (O) và 2 dây AB, CD cắt nhau tại điểm E. Tìm hệ thức đúng?
Lời giải:
Chọn đáp án D.
Câu 7: Cho đường tròn (O), tam giác BCD nội tiếp đường tròn với . Lấy điểm A trên cung BD – không chứa điểm C sao cho AB và CD cắt nhau tại điểm S nằm ngoài đường tròn (O) và .Tính
A. 15°
B.20°
C. 45°
D. 30°
Lời giải:
Chọn đáp án A.
Câu 8: Cho đường tròn (O) và tam ABC nội tiếp đường tròn sao cho . Trên cung AC –không chứa điểm B lấy điểm D sao cho , AC cắt BD tại M nằm trong đường tròn. Tính số đo góc
A. 120°
B. 60°
C. 150°
D.165°
Lời giải:
Chọn đáp án A.
Câu 9: Cho đường tròn (O) ngoại tiếp tam giác ABC, đường thẳng BO cắt đường tròn tại D. Gọi H là giao điểm của AC và BD. Tính , biết rằng
A. 600
B. 1200
C. 1050
D.900
Lời giải:
Chọn đáp án D.
Câu 10: Cho đường tròn (O) và 4 điểm A,B, C, D cùng nằm trên đường tròn sao cho AC và BD cắt nhau tại điểm M nằm trong đường tròn, AB và CD cắt nhau tại điểm S nằm ngoài đường tròn. So sánh hai góc
Lời giải:
Chọn đáp án C.
Câu 11: Cho (O; R) có hai đường kính AB, CD vuông góc với nhau. Gọi M là điểm chính giữa cung BC. Dây AM cắt OC tại E, dây CM cắt đường thẳng AB tại N. Tam giác MCE là tam giác gì?
A. ∆MEC cân tại E
B. ∆MEC cân tại M
C. ∆MEC cân tại C
D. ∆MEC đều
Lời giải:
Xét (O) có là góc có đỉnh bên trong đường tròn nên
Mà cung MB = cung MC và cung AD = cung BD
Từ đó ⇒ ∆MEC cân tại M
Đáp án cần chọn là: B
Câu 12: Cho (O; R) có hai đường kính AB, CD vuông góc với nhau. Gọi M là điểm chính giữa cung BC. Dây AM cắt OC tại E, dây CM cắt đường thẳng AB tại N. Số đo góc MEC bằng:
A. 68o
B. 70o
C. 60o
D. 67,5o
Lời giải:
Vì hai đường kính AB và CD vuông góc với nhau nên
Xét (O) có là góc có đỉnh bên trong đường tròn nên
Đáp án cần chọn là: D
Câu 13: Từ A ở ngoài (O) vẽ tiếp tuyến AB và cát tuyến ACD. Tia phân giác cắt BC, BD lần lượt tại M, N. Vẽ dây BF vuông góc với MN tại H và cắt CD tại E. Tam giác BMN là tam giác gì?
A. ∆BMN cân tại N
B. ∆BMN cân tại M
C. ∆BMN cân tại B
D. ∆BMN đều
Lời giải:
Xét (O) có đường thẳng AM cắt đường tròn tại I; K. Khi đó:
Đáp án cần chọn là: C
Câu 14: Trên đường tròn (O; R) vẽ ba dây liên tiếp bằng nhau AB = BC = CD, mỗi dây có độ dài nhỏ hơn R. Các đường thẳng AB, CD cắt nhau tại I, các tiếp tuyến của (O) tại B và D cắt nhau tại K. Góc BIC bằng góc nào dưới đây?
Lời giải:
Đáp án cần chọn là: B
Câu 15: Cho tam giác nhọn ABC nội tiếp (O). Các tiếp tuyến tại B, C của (O) cắt nhau tại M. Biết
A. 45o
B. 50o
C. 72o
D. 120o
Lời giải:
Xét (O) có: (góc có đỉnh bên ngoài đường tròn)
Đáp án cần chọn là: C
II. Bài tập tự luận có lời giải
Câu 1: Từ A ở ngoài (O) vẽ tiếp tuyến AB và cát tuyến ACD. Tia phân giác cắt BC, BD lần lượt tại M, N. Vẽ dây BF vuông góc với MN tại H và cắt CD tại E. Tích FE. FB
Lời giải:
Xét (O) có đường thẳng AM cắt đường tròn tại I; K. Khi đó:
Vì tam giác BMN cân tại B có BH là đường cao nên BH cũng là đường phân giác
Câu 2: Cho (O; R) có hai đường kính AB, CD vuông góc với nhau. Gọi M là điểm chính giữa cung BC. Dây AM cắt OC tại E, dây CM cắt đường thẳng AB tại N. Tính diện tích tam giác CON theo R
Lời giải:
Xét (O) có là góc có đỉnh bên ngoài đường tròn nên
Lại có số đo cung MB (góc nội tiếp) nên:
III. Bài tập vận dụng
Câu 1: Cho tam giác đều ABC nội tiếp đường tròn tâm O. D là một điểm di động trên cung nhỏ AC, gọi F là giao điểm AD và BC và E là giao điểm của AC và BD. Chứng minh tích AE.BF không phụ thuộc vào vị trị của D.
Câu 2: Tứ giác ABCD có các góc B và D tù. Chứng minh AC > BD
B. Lý thuyết Góc có đỉnh ở bên trong đường tròn. Góc có đỉnh ở bên ngoài đường tròn
1. Góc có đỉnh ở bên trong đường tròn
– Góc có đỉnh nằm bên trong đường tròn được gọi là góc có đỉnh ở bên trong đường tròn.
– Định lí: Số đo của góc có đỉnh ở bên trong đường tròn bằng nửa tổng số đo hai cung bị chắn.
Ví dụ 1. Cho đường tròn (O) có hai dây AB và CD cắt nhau tại E (điểm E nằm bên trong đường tròn) như hình vẽ.
Trong hình vẽ trên, là góc có đỉnh nằm ở bên trong đường tròn chắn hai cung là .
Do đó,
2. Góc có đỉnh nằm bên ngoài đường tròn
– Góc có đỉnh ở bên ngoài đường tròn là góc có đỉnh nằm ngoài đường tròn và các cạnh đều có điểm chung với đường tròn.
– Định lí: Số đo của góc có đỉnh ở bên ngoài đường tròn bằng nửa hiệu số đo hai cung bị chắn.
Ví dụ 2. Cho đường tròn (O) có hai dây AB và CD cắt nhau tại E (điểm E nằm bên ngoài đường tròn) như hình vẽ.
Trong hình vẽ trên, là góc có đỉnh nằm ở bên ngoài đường tròn chắn hai cung là .
Do đó,
Xem thêm