Giới thiệu về tài liệu:
– Số trang: 10 trang
– Số câu hỏi trắc nghiệm: 14 câu
– Lời giải & đáp án: có
Mời quí bạn đọc tải xuống để xem đầy đủ tài liệu Trắc nghiệm Hệ thức Vi ét (nâng cao) có đáp án – Toán lớp 9:
Hệ thức Vi ét (nâng cao)
Câu 1: Cho phương trình x4 – mx3 + (m + 1)x2 – m(m + 1)x + (m + 1)2 = 0
Lời giải:
Khi m = −2, ta có phương trình x4 + 2x3 − x2 – 2x + 1 = 0
Kiểm tra ta thấy x = 0 không là nghiệm của phương trình
Chia hai vế của phương trình cho x2+ ta được:
Đặt . Thay vào phương trình nêu trên ta được:
t2 + 2t – 1 = 0 ⇔ t = −1
Đáp án cần chọn là: A
Câu 2: Có bao nhiêu giá trị của m để phương trình x2 – (2m + 1)x + m2 + 1 = 0 (1) có hai nghiệm phân biệt x1; x2 thỏa mãn (x1; x2)2 = x1
A. 2
B. 3
C. 4
D. 1
Lời giải:
Để phương trình đã cho có 2 nghiệm phân biệt thì
Vậy thì phương trình có hai nghiệm phân biệt
Với thì phương trình có hai nghiệm phân biệt x1; x2
Vậy thỏa mãn điều kiện bài toán
Đáp án cần chọn là: A
Câu 3: Cho phương trình x2 – (m – 1)x – m2 + m – 2 = 0, với m là tham số. Gọi hai nghiệm của phương trình đã cho là x1; x2. Tìm m để biểu thức đạt giá trị lớn nhất
A. m = 4
B. m = 3
C. m = 2
D. m = 1
Lời giải:
+) Xét với mọi m ∈ R
Vậy phương trình luôn có hai nghiệm trái dấu với mọi m
+) Gọi hai nghiệm của phương trình đã cho là x1; x2
Vì phương trình luôn có hai nghiệm trái dấu nên x1x2 ≠ 0, do đó A được xác định với mọi x1; x2
Do x1; x2 trái dấu nên , suy ra A < 0
Khi đó mang giá trị âm và A đạt giá trị lớn nhất khi –A có giá trị nhỏ nhất.
Ta có (BĐT Cô-si), suy ra A ≤ −2. Đẳng thức xảy ra khi và chỉ khi
Vậy với m = 1 thì biểu thức A đạt giá trị lớn nhất là −2
Đáp án cần chọn là: D
Câu 4: Cho phương trình 2x2 + 2mx + m2 – 2 = 0, với m là tham số. Gọi x1; x2 là hai nghiệm của phương trình. Tìm hệ thức liên hệ giữa x1; x2 không phụ thuộc vào m.
A. x1.x2 = x2 – x1 + 1
B. x1 − x2 = x2 – x1 – 1
C. x1.x2 = x2 – x1 + 1
D. x1.x2 = x1 + x2 − 1
Lời giải:
Ta có ∆ = m2 – 4(m – 1) = (m – 2)2 ≥ 0, với mọi m
Do đó phương trình luôn có nghiệm với mọi giá trị của m
Theo hệ thức Vi-ét, ta có x1 + x2 = m và x1.x2 = m – 1
Thay m = x1 + x2 vào x1.x2 = m – 1, ta được x1.x2 = x1 + x2 – 1
Vậy hệ thức liên hệ giữa x1; x2 không phụ thuộc vào m là x1.x2 = x1 + x2 – 1
Đáp án cần chọn là: D
Câu 5: Cho phương trình x2 – (2m + 1)x + 2m2 – 3m + 1 = 0, với m là tham số. Gọi x1; x2 là nghiệm của phương trình. Chọn câu đúng.
Lời giải:
Ta có ∆’ =(m – 1)2 – (2m2 – 3m + 1) = −m2 + m = m(1 – m). Để phương trình có hai nghiệm
Đáp án cần chọn là: A