Trắc nghiệm Hệ tọa độ trong không gian có đáp án – Toán 12
Câu 1: Trong không gian Oxyz , cho vectơ a→ = (2; 1; -2) . Tìm tọa độ của các vectơ b→ cùng phương với vectơ a→ và có độ dài bằng 6.
Ta có:
Mặt khác hai vectơ này cùng phương nên ta có:
Từ đó ta suy ra
Vậy đáp án cần tìm là C.
Lưu ý. Đáp án D là sai, do sai lầm trong tính độ dài của vectơ a→ :
Mà hai vectơ này cùng phương nên ta có:
Câu 2: Trong không gian Oxyz, cho hai vectơ
Với những giá trị nào của m thì sin(a→, b→) đạt giá trị lớn nhất
A. m=1 C. m=-8
B. m=1 hoặc m=-8 D. Không tồn tại m thỏa mãn.
Với mọi cặp vectơ
Dấu bằng xảy ra khi và chỉ khi hay hai vectơ này vuông góc. Điều đó tương đương với điều kiện :
Chọn B.
Nếu chúng ta suy nghĩ sai là: ‘‘ sin(a→, b→) đạt giá trị lớn nhất khi và chỉ khi góc giữa hai vectơ đó lớn nhất ’’ thì khi đó góc giữa hai vectơ bằng 180o , do đó tồn tại số k âm sao cho :
Hệ này vô nghiệm và dẫn đến ta chọn đáp án là D.
Câu 3: Trong không gian Oxyz , gọi φ là góc tạo bởi hai vectơ a→ = (4; 3; 1); b→ = (-1; 2; 3). Trong các khẳng định sau, khẳng định nào đúng?
Ta có
Suy ra
Vậy đáp án đúng là A.
Lưu ý. Đáp án B sai do tính nhầm
Đáp án C sai do tính nhầm
Đáp án D sai do tính nhầm
Câu 4: Trong không gian Oxyz , cho hình bình hành ABDC với A(0;0;0), B(1;-2;3), D(3;1;-4). Tọa độ của điểm C là:
A. (4;-1;-1) B. (2;3;-7) C. (3/2; 1/2; -2) D. (-2;-3;7)
Vì ABDC là hình bình hành nên ta có:
Vậy đáp án đúng là B.
Lưu ý. Đáp án A sai do nhầm giải thiết ABCD là hình bình hành.
Đáp án C xuất phát từ việc vận dụng sai quy tắc hình bình hành
Đáp án D xuất phát từ sai lầm cho rằng: AC→ = DB
Câu 5: Trong không gian Oxyz , cho hình hộp ABCD.A’B’C’D’ có A(1;0;0), B(1;2;0), D(2;-1;0), A’(5;2;2). Tọa độ điểm C’ là:
A. (3;1;0) B. (8;3;2) C. (2;1;0) D. (6;3;2)
Vì ACC’A’, ABCD là những hình bình hành nên áp dụng quy tắc hình bình hành ta có:
Từ đó suy ra:
Vậy đáp án đúng là D.
Lưu ý. Đáp án A sai do cho rằng tọa độ của C’ là tổng tọa độ của hai điểm B và D.
Đáp án B sai do cho rằng tọa độ của C’ là tổng tọa độ của ba điểm B, D và A’
Đáp án C xuất phát từ sai lầm rằng
Câu 6: Cho hai vectơ a→, b→ thay đổi nhưng luôn thỏa mãn:
Giá trị nhỏ nhất của
A. 11 B. -1 C. 1 D. 0
Áp dụng bất đẳng thức vectơ
Dấu bằng xảy ra khi 2 vectơ
cùng hướng. Vậy độ dài của vectơ |a→ – 2b→| ≥ 0 nhỏ nhất bằng 1.
Suy ra đáp án đúng là C.
Lưu ý. Đáp án A là giá trị lớn nhất của
Đáp án B xuất phát từ bất đẳng thức
tuy nhiên đáp án B sai do độ dài của một vectơ không âm
Đáp án D xuất phát từ nhận xét
tuy nhiên trong trường hợp này dấu bằng không xảy ra
Câu 7: Trong không gian Oxyz, cho mặt cầu (S) có phương trình: x2 + y2 + z2 – 2x – 2y – 4z + 5 = 0
Trong các khẳng định sau, khẳng định nào sai?
A. Mặt cầu (S) có tâm I(1;1;2) và đường kính có độ dài bằng 2.
B. Phương trình chính tắc của mặt cầu (S) là: (x – 1)2 + (y – 1)2 + (z – 2)2 = 1
C. Diện tích của mặt cầu (S) là π
D. Thể tích của khối cầu (S) là 4π/3
Ta viết lại phương trình của (S) dưới dạng chính tắc như sau:
x2 + y2 + z2 – 2x – 2y – 4z + 5 = 0
<=> (x2 – 2x + 1) +(y2 – 2y + 1) + (z2 – 4z + 4) = 1 + 1 + 4 – 5
<=> (x – 1)2 + (y – 1)2 + (z – 2)2 = 1
Vậy khẳng định B đúng.
Mặt cầu (S) có tâm I(1;1;2) và có bán kính R=1, do đó đường kính của (S) là 2R=2.
Vậy khẳng định A đúng.
Thể tích của khối cầu (S) là
Vậy khẳng định D đúng
Khẳng định C là sai do nhầm giữa công thức diện tích của mặt cầu với diện tích của đường tròn. Diện tích mặt cầu (S) là: 4πR2 = 4π
Câu 8: Trong không gian Oxyz, cho tứ diện đều ABCD có A(0;1;2). Gọi H là hình chiếu vuông góc của A lên mặt phẳng (BCD). Cho H(4;-3;-2). Tọa độ tâm I và bán kính R của mặt cầu (S) ngoại tiếp tứ diện ABCD là:
A. I(2; -1; 0); R = 2√3 C. I(3; -2; -1); R = 3√3
B. I(4; -3; -2); R = 4√3 D. I(3; -2; -1); R = 9
Do ABCD là tứ diện đều nên H là trọng tâm tam giác BCD và I trùng với trọng tâm G của tứ diện ABCD. Ta có:
Từ đó ta có:
Vậy đáp án C đúng
Lưu ý. Đáp án A sai do nhận định I là trung điểm của AH
Đáp án B sai do cho rằng I trùng H
Đáp án D sai do tính toán nhầm bán kính R
Câu 9: Trong không gian Oxyz, cho hai vectơ u→ = (x; y; z), v→ = (x’; y’; z’) . Khẳng định nào dưới đây sai?
Câu 10: Trong không gian Oxyz, cho hai vectơ u→ = (x; y; z), v→ = (x’; y’; z’) khác 0→ . Khẳng định nào dưới đây sai?
Câu 11: Trong không gian Oxyz, trong các khẳng định dưới đây, khẳng định nào đúng với mọi u→, v→ ?
Câu 12: Trong không gian Oxyz, cho hai vectơ a→ = (x1; y1; z1), b→ = (x2; y2; z2) thay đổi. Trong các khẳng định dưới đây, khẳng định nào đúng?
Câu 13: Trong không gian Oxyz, cho ba vectơ
Trong các khẳng định sau, khẳng định nào đúng?
Câu 14: Trong không gian Oxyz, cho ba vectơ
Trong các khẳng định sau, khẳng định nào đúng?
Câu 15: Trong không gian Oxyz, cho ba vectơ
Câu 16: Trong không gian Oxyz, cho ba vectơ
Trong các khẳng định sau, khẳng định nào đúng?
Câu 17: Trong không gian Oxyz, cho hai vectơ a→ = (x1, y1, z1), 2→ = (x2, y2, z2) thay đổi. Trong các khẳng định dưới đây, khẳng định nào đúng?
Câu 18: Trong không gian Oxyz, cho tam giác ABC có tọa độ các điểm là: A(xA; yA, zA), B(xB; yB, zB), CA(xC; yC, zC) . Gọi M là trung điểm của BC, G là trọng tâm tam giác ABC. Khẳng định nào sau đây là sai?
Câu 19: Trong không gian Oxyz, cho hai điểm A, B có tọa độ các điểm A(xA; yA, zA), B(xB; yB, zB). Tọa độ trung điểm M của đoạn thẳng AB là:
Câu 20: Trong không gian Oxyz, cho tam giác ABC có A(1;2;0), B(-4;5;3), C(3;-10;-6). Tọa độ trọng tâm G của tam giác ABC là:
A. (0;-1;-1) B. (0;-3;-3) C.(0;-2;-2) D. Đáp án khác
Câu 21: Trong không gian Oxyz, cho tam giác ABC có A(2;3;-1), B(1;3;2), G(2;-3;-1) là trọng tâm của tam giác ABC. Tọa độ của điểm C là:
A. (3;-15;-4) B. (-1;-9;-2) C. (-3;15;4) D. (1;9;2)
Câu 22: Trong không gian Oxyz, cho ba vectơ
Tọa độ của vectơ
A. (4;3;9) B. (4;3;21) C. (2;-1;10) D. (4;-1;10)
Câu 23: Trong không gian Oxyz, cho hai điểm A(1;3;-1), B(5;4;-4). Khoảng cách giữa hai điểm A và B là:
A. (4; 1; -3) B. √26 C. 2√2 D. √66
Câu 24: Cho hai vectơ a→, b→ tạo với nhau một góc 120o. Biết độ dài của hai vectơ đó lần lượt là 4 và 3. Độ dài của vectơ tổng a→ + b→ là:
A. 7 B. 1 C. √13 D. √37
Câu 25: Cho hai vectơ a→, b→ tạo với nhau một góc 60o . Biết độ dài của hai vectơ đó lần lượt là 5 và 10. Độ dài của vectơ hiệu a→ – b→ là:
A. 15 B. 5 C. 75 D. √75
Câu 26: Trong không gian Oxyz, cho hai điểm A(2;2;2), B(-4;-4;-4). Điểm nào dưới đây nằm trên đường thẳng AB?
A. M1(-1; 1; -1) B. M2(1; -1; -1) C. M3(-1; -1; 1) D. M4(-1; -1; -1)
Ba điểm A, B, M thẳng hàng khi và chỉ khi hai vecto AB→; AM→ cùng phương
Ta có:
Do đó, ba điểm A, B, M4 thẳng hàng hay điểm M4 nằm trên đường thẳng AB.
Câu 27: Trong không gian Oxyz, cho hai điểm A(1;2;-3), B(3;6;-9). Điểm nào dưới đây không nằm trên đường thẳng AB?
A. M1(2; 4; -6) B. M2(-1; -2; 3) C. M3(0; 0; 1) D. M4(5; 10; -15)
Để ba điểm A, B, M không thẳng hàng khi và chỉ khi hai vecto AB→; AM→ không cùng phương
Ta có:
Do đó,hai vecto này không cùng phương
Suy ra ba điểm A, B, M3 không thẳng hàng hay điểm M3 không nằm trên đường thẳng AB.
Câu 28: Trong không gian Oxyz, cho ba điểm A(2;1;-3), B(4;2;-6), C(10;5;-15). Khẳng định nào sau đây là đúng?
Câu 29: Trong không gian Oxyz, cho hai vectơ a→ = (1; -2; -3), b→ = (m; 2m – 1; 1) . Với những giá trị nào của m thì hai vectơ a→ và b→ vuông góc?
A. m = -1/3 B. m = -1/2 C. m = 1 D. m = 0
Câu 30: Trong không gian Oxyz, cho hai vectơ a→ = (1; m; 2m – 1), b→ = (m + 1; m2 + 1; 4m – 2) . Với những giá trị nào của m thì cos(a→, b→) đạt giá trị lớn nhất?
A. m = 1/2 C. m = 1
B. m = 1 hoặc m = 1/2 D. Không tồn tại m thỏa mãn
Câu 31: Trong không gian Oxyz, cho hai vectơ a→ = (1; -2; 2), b→ = (-2; m – 3; m) . Với những giá trị nào của m thì hai vectơ a→ và b→ có độ dài bằng nhau?
A. m = 1 hoặc m = 2 C. m = 2
B. m = 1 D. Không có m
Câu 32: Trong không gian Oxyz, cho điểm G(1;2;3) là trọng tâm của tam giác ABC trong đó A thuộc trục Ox, B thuộc trục Oy, C thuộc trục Oz. Tọa độ các điểm A, B, C là:
A. A(1; 0; 0), B(0; 2; 0), C(0; 0; 3) C. A(-3; 0; 0), B(0; -6; 0), C(0; 0; -9)
B. A(3; 0; 0), B(0; 6; 0), C(0; 0; 9) D. A(6; 0; 0), B(0; 3; 0), C(0; 0; 9)
Do A thuộc trục Ox, B thuộc trục Oy, C thuộc trục Oz nên A(a; 0; 0); B(0; b; 0) và C(0; 0; c).
Mà điểm G(1;2;3) là trọng tâm của tam giác ABC nên:
Câu 33: Trong không gian Oxyz, ba điểm nào dưới đây lập thành ba đỉnh của một tam giác?
A. A(1; 2; 3), B(5; -4; -1), C(3; -1; 1) C. A(1; 2; 3), B(5; -4; -1), C(9; -10; -5)
B. A(1; 2; 3), B(5; -4; -1), C(6; -2; 2) D. A(1; 2; 3), B(5; -4; -1), C(-3; 8; 7)
Để ba điểm A, B,C lập thành ba đỉnh của 1 tam giác khi và chỉ khi ba điểm A, B,C không thẳng hàng hay hai vecto AB→; AC→ không cùng phương
Xét phương án B ta có:
AB→ = (4; -6; -4); AC→ = (5; -4; -1)
Suy ra hai vecto này không cùng phương hay 3 điểm A, B, C không thằng hàng.
Câu 34: Cho hai vectơ a→, b→ thay đổi nhưng luôn thỏa mãn
Giá trị nhỏ nhất của:
A. 11 B. -1 C. 1 D. √61
Sử dụng bất đẳng thức vectơ:
Dấu bằng xảy ra khi và chỉ khi hai vectơ này ngược hướng. Suy ra đáp án A.
Hai đáp án B và C xuất phát từ sai lầm
Đáp án D xuất phát từ sai lầm
Câu 35: Trong không gian cho hai điểm A(x; y; z), B(m, n, p) thay đổi nhưng luôn thỏa mãn các điều kiện x2 + y2 + z2 = 4, m2 + n2 + p2 = 9. Vectơ AB→ có độ dài nhỏ nhất là:
A. 5 B. 1 C. 13 D. Không tồn tại
Từ giả thiết suy ra
Do đó AB ≥ |OA – OB| = 1. Dấu bằng xảy ra khi O nằm ngoài đoạn AB. Suy ra đáp án đúng là B.
Hai đáp án A, D sai do nhầm OA = x2 + y2 + z2 = 4; OB = m2 + n2 + p2 = 9
Đáp án C sai do nhầm với câu hỏi vectơ AB→ có độ dài lớn nhất
Câu 36: Trong không gian Oxyz, cho hình bình hành ABCD với A(0;1;-2), B(3;-2;1), D(1;4;2). Tọa độ của điểm C là:
A. (4;1;5) B. (4;3;1) C. (4;2;3) D. (4;1;1)
Câu 37: Trong không gian Oxyz, cho hình hộp ABCD.A’B’C’D’ có A(0;0;0), B(1;2;0), D(2;-1;0), A’(5;2;3). Tọa độ của điểm C’ là:
A. (3;1;0) B. (8;3;3) C. (-8;-3;-3) D. (-2;-1;-3)
Sử dụng quy tắc hình hộp trong không gian:
Ta có:
Câu 38: Trong không gian Oxyz, cho vectơ a→ = (1; -2; 3) . Tìm tọa độ của vectơ b→ biết rằng vectơ b→ ngược hướng với vectơ a→ và |b→| = 2|a→|
Vì vectơ b→ ngược hướng với vectơ a→ và |b→| = 2|a→| nên:
b→ = -2a→ = (-2; 4; -6)
Câu 39: Trong không gian Oxyz, cho vectơ a→ = (-1; -2; 3) . Tìm tọa độ của vectơ b→ = (2; y; z) biết rằng vectơ b→ cùng phương với vectơ a→
Vectơ b→ cùng phương với vectơ a→ khi và chỉ khi tồn tại một số thực k thỏa mãn:
Câu 40: Trong không gian Oxyz, cho vectơ a→ = (m; m + 3; 3 – 2m). Với giá trị nào của m thì vectơ a→ có độ dài nhỏ nhất
A. m = 1/2 B. m = 0 C. m = 1 D. m = -3
Câu 41: Trong không gian Oxyz, cho hai vectơ u→ = (3; 4; 0), v→ = (2; -1; 2) . Tích vô hướng của hai vectơ u→ và v→ là:
A. 15 B. 2 C. 3 D. 0
Câu 42: Trong không gian Oxyz, cho mặt cầu (S) có phương trình là:
(x – 1)2 + (y + 2)2 + (z + 3)2 = 25
Tìm tọa độ tâm I và bán kính R của mặt cầu (S)
A. I(1; -2; -3); R = 25 C. I(-1; 2; 3); R = 25
B. I(-1; 2; 3); R = 5 D. I(1; -2; -3); R = 5
Câu 43: Trong không gian Oxyz, cho mặt cầu (S) có phương trình là:
x2 + y2 + z2 – 2x + 4y + 4z + 5 = 0
Tìm tọa độ tâm I và bán kính R của mặt cầu (S)
A. I(1; -2; -2); R = 2 C. I(-1; 2; 2); R = 2
B. I(1; -2; -2); R = 4 D. I(-2; 4; 4); R = 4
Câu 44: Phương trình nào dưới đây là phương trình của một mặt cầu?
A. x2 + y2 + z2 – 2x + 4y – 8z – 25 = 0
B. x2 + y2 + z2 – 2x – 4y – 6z + 15 = 0
C. 3x2 + 3y2 + 3z2 – 6x – 7y – 8z + 1 = 0
D. (x – 1)2 + (y + 2)2 + (z + 3)2 + 10 = 0
Sử dụng phương trình x2 + y2 + z2 – 2ax – 2by – 2cz + d = 0 là phương trình của một mặt cầu khi và chỉ khi a2 + b2 + c2 – d > 0
+ Phương án A và B không thỏa mãn điều kiện a2 + b2 + c2 – d > 0
+ Phương án C: 3x2 + 3y2 + 3z2 – 6x – 7y – 8z + 1 = 0
Nên đây có là phương trình mặt cầu.
+ Phương án D: (x – 1)2 + (y – 2)2 + (z – 3)2 + 10 = 0
⇔ (x – 1)2 + (y – 2)2 + (z – 3)2 = -10 nên không là phương trình mặt cầu.
Câu 45: Trong không gian Oxyz, cho mặt cầu (S) có phương trình là:
3x2 + 3y2 + 3z2 + 6x – 8y + 15z – 3 = 0
Tìm tọa độ tâm I và bán kính R của mặt cầu (S).
Câu 46: Trong không gian Oxyz, cho mặt cầu (S) có đường kính AB với A(-2;-4;3), B(4;2;0). Tìm tọa độ tâm I và bán kính R của mặt cầu (S).
(S) có bán kính:
và có tâm I là trung điểm của AB. Ta có:
Câu 47: Trong không gian Oxyz, cho mặt cầu (S) có tâm I(1;-2;-3) và đi qua điểm M(-1;0;-2). Phương trình của mặt cầu (S) là:
A. (x – 1)2 + (y + 2)2 + (z + 3)2 = 3 C. (x + 1)2 + (y – 2)2 + (z – 3)2 = 3
B. (x + 1)2 + (y – 2)2 + (z – 3)2 = 9 D. (x – 1)2 + (y + 2)2 + (z + 3)2 = 9
Câu 48: Cho (S) là mặt cầu có tâm I(1;2;4) và đi qua điểm M(-1;4;3). Khẳng định nào dưới đây sai?
A. Bán kính của mặt cầu (S) là R = IM = 3
B. Phương trình chính tắc của mặt cầu (S) là: (x – 1)2 + (y – 2)2 + (z – 4)2 = 9
C. Mặt cầu (S) đi qua gốc tọa độ
D. Phương trình tổng quát của mặt cầu (S) là: x2 + y2 + z2 – 2x – 4y – 8z + 12 = 0
Ta có: .
Suy ra:
* Bán kính của mặt cầu (S) là R = IM = 3
* Phương trình chính tắc của mặt cầu (S) là:
(x – 1)2 + (y – 2)2 + (z – 4)2 = 9
* Phương trình tổng quát của mặt cầu (S) là:
x2 + y2 + z2 – 2x – 4y – 8z + 12 = 0
* Thay tọa độ điểm O vào phương trình mặt cầu ta thấy không thỏa mãn nên mặt cầu không đi qua gốc tọa độ O.
Câu 49: Cho mặt cầu (S) có tâm I(1;2;3), bán kính R=4. Khẳng định nào sau đây là sai?
A. Diện tích của mặt cầu (S) bằng 16π
B. Thể tích của khối cầu (S) bằng 64π/3
C. Phương trình chính tắc cúa (S) là: (x + 1)2 + (y + 2)2 + (z + 3)2 = 16
D. Phương trình tổng quát của mặt cầu (S) là: x2 + y2 + z2 – 2x – 4y – 6z – 2 = 0
Câu 50: Cho mặt cầu (S) có tâm I(1;2;-1) và bán kính R=3. Phương trình mặt cầu (S’) đối xứng với mặt cầu (S) qua gốc tọa độ là:
A. (x – 1)2 + (y – 2)2 + (z + 1)2 = 9
C. x2 + y2 + z2 – 2x – 4y + 2z – 3 = 0
B. (x + 1)2 + (y + 2)2 + (z – 1)2 = 9
D. x2 + y2 + z2 = 9
Mặt cầu (S’) đối xứng với mặt cầu (S) qua gốc tọa độ nên mặt cầu (S’) có tâm I’(-1;-2; 1) đối xứng với I qua gốc O và có bán kính R’ = R = 3.
Phương trình mặt cầu (S’) là:(x + 1)2 + (y + 2)2 + (z – 1)2 = 9
Câu 51: Cho mặt cầu (S) có phương trình: x2 + y2 + z2 – 2x + 4y – 6z – 2 = 0 . Điểm M(m; -2; 3) nằm trong mặt cầu khi và chỉ khi:
A. m=6 B. m > -3 C. -3 < m < 5 D. m < 5
Mặt cầu (S) có tâm I(1;-2;3),
M nằm trong mặt cầu (S) khi và chỉ khi: IM < R nên
Câu 52: Trong không gian Oxyz, cho mặt cầu (S) có tâm I(0;0;1), bán kính R=5. Mặt phẳng (P): 4x – 4y + z + m = 0 cắt mặt cầu (S) theo một đường tròn có bán kính bằng 5. Khi đó m bằng:
A. m=-1 B. m=-4 C. m=3 D. Đáp số khác
Do mặt phẳng (P) cắt mặt cầu (S) theo một đường tròn có bán kính bằng 5 bằng bán kính mặt cầu nên tâm I thuộc mặt phẳng (P) .
Thay tọa độ tâm I vào phương trình mặt phẳng (P) ta được:
4.0- 3.0 + 1+ m= 0 nên m = -1 .
Câu 53: Trong không gian Oxyz, cho mặt cầu (S) đi qua bốn điểm O, A(4;0;0), B(0;-2;0), C(0;0;2). Phương trình của mặt cầu (S) là:
A. (x – 1)2 + (y + 1)2 + (z – 1)2 = 6 C. (x – 4)2 + (y + 2)2 + (z + 2)2 = 24
B. (x – 2)2 + (y + 1)2 + (z – 1)2 = 24 D. (x + 2)2 + (y – 1)2 + (z + 1)2 = 6
Gọi I(a; b; c) là tâm của mặt cầu (S). Ta có:
Từ đó: R = OI = √6
Vậy phương trình của mặt cầu (S) là: (x – 2)2 + (y + 1)2 + (z – 1)2 = 6
Câu 54: Trong không gian Oxyz, cho mặt cầu (S) đi qua bốn điểm O, A(-4;0;0), B(0;2;0), C(0;0;4). Phương trình của mặt cầu (S) là:
A. x2 + y2 + z2 + 2x – y – 2z = 0 C. x2 + y2 + z2 + 4x – 2y + 4z = 0
B. x2 + y2 + z2 + 4x + 2y – 4z = 0 D. x2 + y2 + z2 + 4x – 2y – 4z = 0
Phương trình tổng quát của mặt cầu (S) có dạng x2 + y2 + z2 – 2ax – 2by – 2cz + d = 0 với a2 + b2 + c2 – d > 0
Ta có: O(0; 0; 0) ∈ (S) ⇔ d = 0
A(-4; 0; 0) ∈ (S) ⇔ (-4)2 + 02 + 02 – 2a.(-4) – 0 – 0 + 0 = 0 ⇔ a = -2
B(0; 2; 0) ∈ (S) ⇔ 02 + 22 + 02 – 0 – 2b.2 – 0 + 0 = 0 ⇔ b = 1
C(0; 0; 4) ∈ (S) ⇔ 02 + 02 + 42 – 0 – 0 – 2c.4 – 0 = 0 ⇔ c = 2
Vậy phương trình tổng quát của mặt cầu (S) là: x2 + y2 + z2 + 4x -2y – 4z = 0
Câu 55: Vị trí tương đối của hai mặt cầu (S) có tâm I(1;1;1), bán kính R = 1 và mặt cầu (S’) có tâm I'(3;3;3), bán kính R’=1 là:
A. ở ngoài nhau B. tiếp xúc C. cắt nhau D. chứa nhau
Do đó, hai mặt cầu đã cho ở ngoài nhau.
Câu 56: Vị trí tương đối của hai mặt cầu: x2 + y2 + z2 + 2x – 2y – 2z – 7 = 0 và x2 + y2 + z2 + 2x + 2y + 4z + 5 = 0 là:
A. ở ngoài nhau B. tiếp xúc C. cắt nhau D. chứa nhau
Mặt cầu: x2 + y2 + z2 + 2x – 2y – 2z – 7 = 0 có tâm I(-1; 1;1) và
Mặt cầu: x2 + y2 + z2 + 2x + 2y + 4z + 5= 0 có tâm I’( -1; -1; -2) và R’ = 1
Do đó, hai mặt cầu này cắt nhau.
Câu 57: Trong không gian Oxyz, cho A(1;0;-3), B(-3;-2;-5). Biết rằng tập hợp các điểm M trong không gian tỏa mãn đẳng thức AM2 + 2BM2 = 30 là một mặt cầu (S). Tìm tọa độ tâm I và bán kính R của (S).
A. I(-1; -1; -4); R = √6 C. I(-1; -1; -4); R = √30/2
B. I(-2; -2; -8); R = 3 D. I(-1; -1; -4); R = 3
Gọi I là trung điểm của AB. AB = √24
Theo công thức đường trung tuyến ta có
Mặt khác ta có
Nên I(-1; -1; -4) . Từ đó suy ra đáp án đúng là D.
Đáp án A và C sai do nhớ nhầm công thức tính đường trung tuyến
Đáp án B sai do tính nhầm công thức trung điểm
Câu 58: Trong không gian Oxyz, cho hai điểm A(0;2;-4), B(-3;5;2). Tìm tọa độ điểm M sao cho biểu thức AM2 + 2BM2 đạt giá trị nhỏ nhất.
A. M(-3/2; 7/2; -1) B. M(-1; 3; -2) C. M(-2; 4; 0) D. M(-3; 7; -2)
Gọi M(x; y; z). Ta có:
AM2 + 2BM2 = x2 + (y – 2)2 + (z + 4)2 + 2[(x + 3)2 + (y – 5)2 + (z – 2)2]
= x2 + y2– 4y + 4+ z2 +8z+ 16 + 2(x2+ 6x + 9 + y2 – 10y + 25 + z2 – 4z + 4)
= 3(x2 + y2 + z2 + 4x – 8y) + 96 = 3[(x + 2)2 + (y – 4)2 + z2] + 36 ≥ 36
Dấu bằng xảy ra khi và chỉ khi x = -2, y = 4, z = 0 → M(-2; 4; 0) .
Vậy đáp án đúng là C
Dấu bằng xảy ra khi và chỉ khi M trùng I. Từ đó sau khi tìm được điểm I ta suy ra đáp án C đúng.
Nếu đề bài hỏi AM2 + BM2 đạt giá trị nhỏ nhất thì đáp án đúng là A ( vị trí trung điểm của AB)
Câu 59: Trong không gian Oxyz, cho mặt cầu (S) có phương trình là: (x – 1)2 + (y – 1)2 + (z – 3)2 = 4
Cho ba điểm A, M, B nằm trên mặt cầu (S) thỏa mãn điều kiện góc AMB = 90o . Diện tích tam giác AMB có giá trị lớn nhất là:
A. 4 B. 2 C. 4π D. Không tồn tại
Ba điểm A, M, B nằm trên mặt cầu (S) thỏa mãn điều kiện = 90°
Nên tam giác AMB vuông tại M.
Ta có:
Dấu bằng xáy ra khi và chỉ khi tam giác MAB vuông cân tại M và AB là một đường kính của mặt cầu (S). Vậy đáp án đúng là A.
Câu 60: Trong không gian Oxyz, cho hai mặt cầu (S) và (S’) có tâm lần lượt là I(-1;2;3), I’(3;-2;1) và có bán kính lần lượt là 4 và 2. Cho điểm M di động trên mặt cầu (S), N di động trên mặt cầu (S’). Khi đó giá trị lớn nhất của đoạn thẳng MN bằng:
A. 8 B. 2 C. 12 D. 6
Ta có: II’ = 6 = R + R’
Ta có: MN ≥ MI + II’ + I’N = R + 6 + R’ = 12
Dấu bằng xảy ra khi M, I, I’, N theo thứ tự nằm trên một đường thẳng. Do đó M là giao điểm của tia đối của tia II’ với mặt cầu (S), N là giao điểm của tia đối của tia I’I với mặt cầu (S’). Vậy đáp án đúng là C.
Xem thêm