Lý thuyết Toán 10 Bài 20: Vị trí tương đối giữa hai đường thẳng. Góc và khoảng cách
A. Lý thuyết Vị trí tương đối giữa hai đường thẳng. Góc và khoảng cách
1. Vị trí tương đối giữa hai đường thẳng
– Mỗi đường thẳng trong mặt phẳng tọa độ là một tập hợp những điểm có tọa độ thỏa mãn phương trình của đường thẳng đó. Vì vậy, bài toán tìm giao điểm của hai đường thẳng được quy về bài toán giải hệ gồm hai phương trình tương ứng.
Trên mặt phẳng tọa độ, xét hai đường thẳng ∆1: a1x + b1y + c1 = 0 và ∆2: a2x + b2y + c2 = 0.
Khi đó, tọa độ giao điểm của ∆1 và ∆2 là nghiệm của hệ phương trình:
∆1 cắt ∆2 tại M(x0 ; y0) khi và chỉ khi hệ (*) có nghiệm duy nhất (x0; y0).
∆1 song song với ∆2 khi và chỉ khi hệ (*) vô nghiệm.
∆1 trùng ∆2 khi và chỉ khi hệ (*) có vô số nghiệm.
Chú ý:
Dựa vào các vectơ chỉ phương , hoặc các vectơ pháp tuyến , của ∆1, ∆2 ta có:
+ ∆1 và ∆2 song song hoặc trùng nhau ⇔ và cùng phương ⇔ và cùng phương.
+ ∆1 và ∆2 cắt nhau ⇔ và không cùng phương ⇔ và không cùng phương.
Nhận xét: Giả sử hai đường thẳng ∆1, ∆2 có hai vectơ chỉ phương , (hay hai vectơ pháp tuyến , ) cùng phương. Khi đó:
+ Nếu ∆1 và ∆2 có điểm chung thì ∆1 trùng ∆2.
+ Nếu tồn tại điểm thuộc ∆1 nhưng không thuộc ∆2 thì ∆1 song song với ∆2.
Ví dụ : Xét vị trí tương đối giữa hai đường thẳng sau :
a) ∆1 : x + 2y – 5 = 0 và ∆2 : –x – 2y + 3 = 0.
b) ∆1 : 2x + y + 1 = 0 và ∆2 : 4x – y + 5 = 0
Hướng dẫn giải
a) ∆1 có một vectơ pháp tuyến là ; ∆2 có một vectơ pháp tuyến là .
Vì nên hai vectơ và cùng phương.
Do đó ∆1 và ∆2 có thể song song hoặc trùng nhau.
Mặt khác, xét điểm A(1; 2) ta có:
1 + 2.2 – 5 = 0 nên A(1; 2) thuộc đường thẳng ∆1;
–1 – 2.2 + 3 = –2 ≠ 0 nên A(1; 2) không thuộc đường thẳng ∆2;
Vậy ∆1 và ∆2 song song với nhau.
b) Trên mặt phẳng tọa độ Oxy, xét hai đường thẳng
∆1 : 2x + y + 1 = 0 và ∆2 : 4x – y + 5 = 0.
Khi đó, tọa độ giao điểm của ∆1 và ∆2 là nghiệm của hệ phương trình:
Giải hệ trên:
Do đó hệ có nghiệm duy nhất (x; y) = (– 1; – 9).
Vậy hai đường thẳng ∆1 và ∆2 cắt nhau tại điểm (– 1; – 9).
2. Góc giữa hai đường thẳng
– Hai đường thẳng cắt nhau tạo thành bốn góc, số đo của góc không tù được gọi là số đo góc (hay đơn giản là góc) giữa hai đường thẳng.
– Góc giữa hai đường thẳng song song hoặc trùng nhau được quy ước bằng 0°.
Ví dụ: Góc giữa hai đường thẳng ∆1 và ∆2 trong hình sau là góc φ.
– Cho hai đường thẳng ∆1: a1x + b1y + c1 = 0 và ∆2: a2x + b2y + c2 = 0.
Với các vectơ pháp tuyến và tương ứng. Khi đó, góc φ giữa hai đường thẳng đó được xác định thông qua công thức:
Chú ý:
+) ∆1 ⊥ ∆2 ⇔⇔ a1a2 + b1b2 = 0.
+) Nếu ∆1, ∆2 có các vectơ chỉ phương , thì góc φ giữa ∆1 và ∆2 cũng được xác định thông qua công thức cos φ = |cos()|.
Ví dụ: Tính góc giữa hai đường thẳng ∆1: 2x + 3y – 5 = 0 và ∆2: –x + 2y + 3 = 0 (làm tròn kết quả đến độ).
Hướng dẫn giải
Đường thẳng ∆1 có vectơ pháp tuyến là ; đường thẳng ∆2 có vectơ pháp tuyến là .
Gọi góc giữa hai đường thẳng ∆1 và ∆2 là φ. Khi đó ta có:
⇒ φ ≈ 60°.
Vậy góc giữa hai đường thẳng ∆1 và ∆2 khoảng 60°.
3. Khoảng cách từ một điểm đến một đường thẳng
Cho điểm M(x0 ; y0) và đường thẳng ∆: ax + by + c = 0. Khoảng cách từ điểm M đến đường thẳng ∆, kí hiệu d(M, ∆), được tính bởi công thức:
Ví dụ: Tính khoảng cách từ điểm M(1; 3) đến đường thẳng ∆: 4x – 5y + 2 = 0.
Hướng dẫn giải
Áp dụng công thức tính khoảng cách từ điểm M(1; 3) đến đường thẳng ∆: 4x – 3y + 2 = 0, ta có:
Vậy khoảng cách từ điểm M(1; 3) đến đường thẳng ∆: 4x – 3y + 2 = 0 bằng .
B. Bài tập Vị trí tương đối giữa hai đường thẳng. Góc và khoảng cách
Bài 1.Xét vị trí tương đối của hai đường thẳng:
a) và ∆2 : –3x + 3y – 2 = 0.
b) ∆1 : –x + 2y – 3 = 0 và ∆2 : –x + y – 7 = 0 .
c) và
Hướng dẫn giải
a) Đường thẳng ∆1 có vectơ chỉ phương là ;
Đường thẳng ∆2 có vectơ pháp tuyến là suy ra vectơ chỉ phương là .
Vì nên hai vectơ và cùng phương.
Suy ra hai đường thẳng ∆1 và ∆2 song song hoặc trùng nhau.
Mặt khác, ta có điểm A(1; –2) thuộc ∆1, tuy nhiên –3.1 + 3(– 2) – 2 = – 11 ≠ 0 nên điểm A không thuộc ∆2.
Do đó, ∆1 và ∆2 không trùng nhau, nên ∆1 và ∆2 song song.
Vậy ∆1 và ∆2 song song với nhau.
b) Trên mặt phẳng tọa độ Oxy, xét hai đường thẳng:
∆1 : –x + 2y – 3 = 0 và ∆2 : –x + y – 7 = 0 .
Khi đó, tọa độ giao điểm của ∆1 và ∆2 là nghiệm của hệ phương trình:
Giải hệ trên:
Ta có
Do đó hệ có nghiệm duy nhất (x; y) = (– 4; – 11).
Vậy hai đường thẳng ∆1 và ∆2 cắt nhau tại điểm (– 4; – 11).
c) Hai đường thẳng ∆1, ∆2 lần lượt có vectơ chỉ phương là , .
Ta có .
⇒ và cùng phương.
⇒ ∆1 và ∆2 song song hoặc trùng nhau.
Mặt khác ta có điểm A(0; 2) vừa thuộc ∆1, vừa thuộc ∆2, do đó ∆1, ∆2 trùng nhau.
Vậy ∆1, ∆2 trùng nhau.
Bài 2.
a) Tính góc giữa hai đường thẳng ∆1: x + 3y – 5 = 0 và ∆2: –2x + y – 6 = 0.
b) Tính góc giữa hai đường thẳng ∆1: x + 2y + 1 = 0 và
Hướng dẫn giải
Đường thẳng ∆1 : x + 3y – 5 = 0 có vectơ pháp tuyến là ;
Đường thẳng ∆2 : –2x + y – 6 = 0 có vectơ pháp tuyến là ;
Gọi φ là góc giữa hai đường thẳng ∆1 và ∆2.
Áp dụng công thức tính góc giữa hai đường thẳng ta có:
cos φ = |cos()| = = =
⇒φ ≈ 82°.
Vậy góc giữa hai đường thẳng ∆1 và ∆2 khoảng 82°.
b) Đường thẳng ∆1 có vectơ pháp tuyến là nên có vectơ chỉ phương là: .
Đường thẳng ∆2 có vectơ chỉ phương là : .
Gọi φ là góc giữa hai đường thẳng ∆1 và ∆2.
Cách 1:
Áp dụng công thức tính góc giữa hai đường thẳng ta có:
cos φ = |cos()| = = =
⇒φ = 90°.
Vậy góc giữa hai đường thẳng ∆1 và ∆2 là 90°.
Cách 2:
Ta có và nên
Do đó
Nên D1⊥D2
Suy ra φ = 90°.
Vậy góc giữa hai đường thẳng ∆1 và ∆2 là 90°.
Bài 3. Cho đường thẳng và điểm M(–1 ; 1). Tính khoảng cách từ điểm M đến ∆.
Hướng dẫn giải
Đường thẳng ∆ có vectơ chỉ phương nên vectơ pháp tuyến là và ∆ đi qua điểm A(0 ; 5).
Khi đó phương trình tổng quát của đường thẳng ∆ là : –2(x – 0) + 1(y – 5) = 0,
Tức là ∆ : –2x + y – 5 = 0.
Áp dụng công thức tính khoảng cách từ điểm M đến đường thẳng ∆: –2x + y – 5 = 0, ta có :
Vậy khoảng cách từ điểm M(–1 ; 1) đến đường thẳng ∆: –2x + y – 5 = 0 là .
Bài 4. Cho tam giác ABC có A(1; 4), B(3; – 1), C(6; 2).
a) Tính độ dài đường cao AH (H là chân đường cao hạ từ A xuống BC) của tam giác ABC.
b) Tính diện tích tam giác ABC.
Hướng dẫn giải
a) Ta có .
Đường thẳng BC có một vectơ chỉ phương là
Suy ra một vectơ pháp tuyến của đường thẳng BC là
Khi đó, phương trình tổng quát của đường thẳng BC là: 1(x – 3) – 1(y + 1) = 0.
Tức là BC: x – y – 4 = 0.
Độ dài đường cao AH của tam giác ABC chính là khoảng cách của điểm A đến đường thẳng BC.
Áp dụng công thức tính khoảng cách từ điểm A đến đường thẳng BC: x – y – 4 = 0, ta có:
Vậy độ dài đường cao AH của tam giác ABC là (đơn vị độ dài).
b) Ta có BC = (đơn vị độ dài)
Áp dụng công thức tính diện tích của tam giác ABC, ta có:
(đơn vị diện tích).
Vậy diện tích của tam giác ABC là 10,5 (đơn vị diện tích).
Xem thêm các bài tóm tắt lý thuyết Toán lớp 10 Kết nối tri thức hay, chi tiết khác:
Lý thuyết Bài 19: Phương trình đường thẳng
Lý thuyết Bài 20: Vị trí tương đối giữa hai đường thẳng. Góc và khoảng cách
Lý thuyết Bài 21: Đường tròn trong mặt phẳng tọa độ
Lý thuyết Bài 22: Ba đường conic
Lý thuyết Bài 23: Quy tắc đếm