Câu hỏi:
Trường Trung học cơ sở Nguyễn Huệ có bốn khối 6, 7, 8, 9 và tổng số học sinh toàn trường là 660 em. Tính số học sinh của mỗi khối lớp, biết rằng số học sinh khối 6, 7, 8, 9 theo thứ tự tỉ lệ với các số 3; 3,5; 4,5; 4.
A. Số học sinh của các khối 6, 7, 8, 9 lần lượt là 132, 154, 198, 178 em;
B. Số học sinh của các khối 6, 7, 8, 9 lần lượt là 132, 154, 198, 176 em;
Đáp án chính xác
C. Số học sinh của các khối 6, 7, 8, 9 lần lượt là 130, 154, 198, 178 em;
D. Số học sinh của các khối 6, 7, 8, 9 lần lượt là 132, 152, 198, 178 em.
Trả lời:
Đáp án đúng là: B
Gọi số học sinh của các khối lớp 6, 7, 8, 9 lần lượt là x, y, z, t (em).
Vì tổng số học sinh của trường là 660 em nên ta có x + y + z + t = 660.
Từ đầu bài và áp dụng tính chất của dãy tỉ số bằng nhau ta có:
Từ đó, ta có:
x = 44 . 3 = 132; y = 44 . 3,5 = 154; z = 44 . 4,5 = 198; t = 44 . 4 = 176.
Vậy số học sinh của các khối 6, 7, 8, 9 lần lượt là 132, 154, 198, 176 em.
====== **** mời các bạn xem câu tiếp bên dưới **** =====
- Tìm diện tích hình chữ nhật biết rằng tỉ số giữa hai cạnh của nó là 34 và chu vi là 42m.
Câu hỏi:
Tìm diện tích hình chữ nhật biết rằng tỉ số giữa hai cạnh của nó là và chu vi là 42m.
Trả lời:
Gọi x (m) y (m) lần lượt là chiều rộng và chiều dài của hình chữ nhật (0 < x, y < 42)
Chu vi hình chữ nhật là 42 m nên (x + y) . 2 = 42
x + y = 42 : 2 = 21.
Tỉ số giữa hai cạnh là nên ta có hay .
Theo tính chất dãy tỉ số bằng nhau, ta được:
.
Suy ra: x = 3 . 3 = 9 và y = 4 . 3 = 12 (thỏa mãn).
Diện tích hình chữ nhật là:
9 . 12 = 108 (m2).
Vậy diện tích hình chữ nhật 108 m2.====== **** mời các bạn xem câu tiếp bên dưới **** =====
- Số viên bi của ba bạn Minh, Hùng, Dũng tỉ lệ với các số 3; 5; 7. Tính số viên bi của mỗi bạn biết rằng ba bạn có 90 viên bi.
Câu hỏi:
Số viên bi của ba bạn Minh, Hùng, Dũng tỉ lệ với các số 3; 5; 7. Tính số viên bi của mỗi bạn biết rằng ba bạn có 90 viên bi.
Trả lời:
Gọi x (viên bi), y (viên bi), z (viên bi) lần lượt là số viên bi của ba bạn Minh, Hùng, Dũng (x, y, z Î ℕ*; x, y, z < 90).
Số bi của Minh, Hùng, Dũng tỉ lệ với các số 3; 5; 7 nghĩa là .
Vì ba bạn có tất cả 90 viên bi nên x + y + z = 90.
Theo tính chất của dãy tỉ số bằng nhau ta có:
Suy ra: x = 3 . 6 = 18; y = 5 . 6 = 30; z = 7 . 6 = 42.
Do đó x = 18; y = 30; z = 42.
Vậy số viên bi của Minh, Hùng, Dũng lần lượt là 18 viên bi; 30 viên bi và 42 viên bi.====== **** mời các bạn xem câu tiếp bên dưới **** =====
- Trường THCS Ngôi Sao có ba lớp 7 với tổng số học sinh là 147 em. Biết rằng 23 số học sinh lớp 7A bằng 34 số học sinh lớp 7B và bằng 45 số học sinh lớp 7C. Tính số học sinh mỗi lớp?
Câu hỏi:
Trường THCS Ngôi Sao có ba lớp 7 với tổng số học sinh là 147 em. Biết rằng số học sinh lớp 7A bằng số học sinh lớp 7B và bằng số học sinh lớp 7C. Tính số học sinh mỗi lớp?
A. Số học sinh lớp 7A, 7B, 7C lần lượt là 54 em; 48 em và 45 em;
Đáp án chính xác
B. Số học sinh lớp 7A, 7B, 7C lần lượt là 50 em; 48 em và 45 em;
C. Số học sinh lớp 7A, 7B, 7C lần lượt là 54 em; 48 em và 42 em;
D. Số học sinh lớp 7A, 7B, 7C lần lượt là 54 em; 42 em và 45 em.
Trả lời:
Đáp án đúng là: A
Gọi x; y; z (em) lần lượt là số học sinh của ba lớp 7A, 7B. 7C (x; y; z Î ; x, y, z < 147).
Tổng số học sinh ba lớp 7 là 147 em nên x + y + z = 147.
Theo bài ra ta có:
Suy ra: .
Hay .
Áp dụng tính chất của dãy tỉ số bằng nhau. ta được:Suy ra: x = 18 . 3 = 54; y = 16 . 3 = 48; z = 15 . 3 = 45.
Do đó x = 54; y = 48; z = 45 (thỏa mãn).
Vậy số học sinh lớp 7A, 7B, 7C lần lượt là 54 em; 48 em và 45 em.====== **** mời các bạn xem câu tiếp bên dưới **** =====
- Ba nhà đầu tư góp vốn để mở một công ty theo tỉ lệ 2 : 3 : 4. Cuối năm, số tiền lợi nhuận công ty dự kiến trả cho các nhà đầu tư là 72 triệu đồng, chia theo tỉ lệ góp vốn. Tính số tiền lợi nhuận mỗi nhà đầu tư nhận được lần lượt là bao nhiêu?
Câu hỏi:
Ba nhà đầu tư góp vốn để mở một công ty theo tỉ lệ 2 : 3 : 4. Cuối năm, số tiền lợi nhuận công ty dự kiến trả cho các nhà đầu tư là 72 triệu đồng, chia theo tỉ lệ góp vốn. Tính số tiền lợi nhuận mỗi nhà đầu tư nhận được lần lượt là bao nhiêu?
A. 12 triệu đồng, 24 triệu đồng và 32 triệu đồng;
B. 16 triệu đồng, 24 triệu đồng và 30 triệu đồng;
C. 16 triệu đồng, 20 triệu đồng và 32 triệu đồng;
D. 16 triệu đồng, 24 triệu đồng và 32 triệu đồng.
Đáp án chính xác
Trả lời:
Đáp án đúng là: D
Gọi x, y và z (triệu đồng) lần lượt là số tiền lợi nhuận mỗi nhà đầu tư nhận được.
Số tiền lợi nhuận công ty dự kiến trả cho các nhà đầu tư là 72 triệu đồng nên:
x + y + z = 72.
Theo đề bài, ta có: .
Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
.
Suy ra: x = 2 . 8 = 16; y = 3 . 8 = 24; z = 4 . 8 = 36.
Do đó x = 16; y = 24; z = 36 (thỏa mãn).
Vậy số tiền lợi nhuận mỗi nhà đầu tư nhận được là: 16 triệu đồng, 24 triệu đồng và 32 triệu đồng.====== **** mời các bạn xem câu tiếp bên dưới **** =====
- Trong tháng 5 vừa qua, tỉ số sản phẩm làm được của An và Bình trong một phân xưởng là 0,95. Hỏi An và Bình lần lượt làm được bao nhiêu sản phẩm, biết rằng An làm nhiều hơn Bình là 10 sản phẩm?
Câu hỏi:
Trong tháng 5 vừa qua, tỉ số sản phẩm làm được của An và Bình trong một phân xưởng là 0,95. Hỏi An và Bình lần lượt làm được bao nhiêu sản phẩm, biết rằng An làm nhiều hơn Bình là 10 sản phẩm?
A. 190 sản phẩm và 210 sản phẩm;
B. 180 sản phẩm và 200 sản phẩm;
C. 190 sản phẩm và 200 sản phẩm;
Đáp án chính xác
D. 180 sản phẩm và 190 sản phẩm.
Trả lời:
Đáp án đúng là: C
Gọi x, y (sản phẩm) lần lượt là số sản phẩm của An và Bình làm được (x, y Î ℕ*).
Tỉ số sản phẩm làm được của An và Bình là 0,95 nên:
hay .
Do đó .
Vì An làm nhiều hơn Bình là 10 sản phẩm nên: y − x = 10.
Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
.
Suy ra: x = 19 . 10 = 190; y = 20 . 10 = 200.
Do đó x = 190; y = 200 (thỏa mãn).
Vậy số sản phẩm An và Bình làm được lần lượt là: 190 sản phẩm và 200 sản phẩm.====== **** mời các bạn xem câu tiếp bên dưới **** =====