Câu hỏi:
Cho góc xOy khác góc bẹt, gọi Ot là tia phân giác của góc xOy. Trên tia Ox lấy điểm A, trên tia Oy lấy điểm B sao cho OA = OB. Trên tia đối của tia Ot lấy điểm C tuỳ ý. Chọn phát biểu đúng:
A. \(\widehat {AOC} = \widehat {BOC};\)
B. CA = CB;
C. CO là tia phân giác của \(\widehat {ACB};\)
D. Cả A, B, C đểu đúng.
Đáp án chính xác
Trả lời:
Đáp án đúng là: D
Vì tia Ot là tia phân giác của góc xOy nên \(\widehat {xOt} = \widehat {yOt}\) (tính chất tia phân giác của một góc)
Mà \(\widehat {xOt} + \widehat {xOC} = 180^\circ \) (tính chất hai góc kề bù) và \(\widehat {yOt} + \widehat {yOC} = 180^\circ \) (tính chất hai góc kề bù)
Do đó \(\widehat {xOC} = \widehat {yOC}\) hay \(\widehat {AOC} = \widehat {BOC}\)
Xét tam giác AOC và tam giác BOC có:
OA = OB (giả thiết),
\(\widehat {AOC} = \widehat {BOC}\) (chứng minh trên),
OC là cạnh chung
Do đó DOAC = DOBC (c.g.c)
Suy ra CA = CB (hai cạnh tương ứng) và \(\widehat {OCA} = \widehat {OCB}\) (hai góc tương ứng)
Nên tia CO là tia phân giác của \(\widehat {ACB}.\)
Vậy ta chọn phương án D.
====== **** mời các bạn xem câu tiếp bên dưới **** =====