Lý thuyết Toán lớp 11 Bài 1: Giới hạn của dãy số
A. Lý thuyết Giới hạn của dãy số
1. Giới hạn hữu hạn của dãy số
a, Giới hạn 0 của dãy số
– Dãy số có giới hạn 0 khi n dần tới dương vô cực, nếu có thể nhỏ hơn một số dương bé tùy ý , kể tử một số hạng nào đó trở đi.
Kí hiệu hay khi hay .
* Chú ý:
+
+ Nếu thì
b, Giới hạn hữu hạn của dãy số
Ta nói dãy số có giới hạn là số thực a khi n dần tới dương vô cực, nếu , kí hiệu hay khi .
* Chú ý: Nếu (c là hằng số) thì
2. Các phép toán về giới hạn hữu hạn của dãy số
Cho và c là hằng số thì
- Nếu thì với mọi n và thì và
3. Tổng của cấp số nhân lùi vô hạn
Cấp số nhân có công bội q thỏa mãn được gọi là cấp số nhân lùi vô hạn.
Tổng của cấp số nhân lùi vô hạn là:
4. Giới hạn vô cực
– Dãy số được gọi là có giới hạn khi nếu có thể lớn hơn một số dương bất kì, kể từ một số hạng nào đó trở đi, kí hiệu hay khi .
– Dãy số được gọi là có giới hạn khi nếu , kí hiệu hay khi .
* Chú ý:
- Nếu (hoặc) thì .
- Nếu và thì .
*Nhận xét:
B. Bài tập Giới hạn của dãy số
Bài 1. Tính các giới hạn sau:
a) ;
b) ;
c) .
Hướng dẫn giải
a) ;
b) ;
Bài 2. Tìm số hạng tổng quát của cấp số nhân lùi vô hạn có công bội là và tính tổng của cấp số nhân lùi vô hạn.
Hướng dẫn giải
Suy ra số hạng đầu tiên của dãy là: u1 = 1.
Khi đó tổng cấp số nhân lùi vô hạn là:
Vậy số hạng tổng quát của cấp số nhân lùi vô hạn là: và tổng của cấp số nhân lùi vô hạn là .
Bài 3. Tính các giới hạn sau:
a) ;
b) .
Hướng dẫn giải
Video bài giảng Toán 11 Bài 1: Giới hạn của dãy số – Chân trời sáng tạo
Xem thêm các bài tóm tắt lý thuyết Toán lớp 11 Chân trời sáng tạo hay, chi tiết khác:
Lý thuyết Bài 3: Cấp số nhân
Lý thuyết Bài 1: Giới hạn của dãy số
Lý thuyết Bài 2: Giới hạn của hàm số
Lý thuyết Bài 3: Hàm số liên tục
Lý thuyết Bài 1: Điểm, đường thẳng và mặt phẳng trong không gian
Lý thuyết Bài 2: Hai đường thẳng song song
Xem thêm các bài tóm tắt lý thuyết chương Toán lớp 11 Chân trời sáng tạo hay, chi tiết khác:
Lý thuyết Chương 1: Hàm số lượng giác và phương trình lượng giác
Lý thuyết Chương 2: Dãy số. Cấp số cộng. Cấp số nhân
Lý thuyết Chương 3: Giới hạn. Hàm số liên tục
Lý thuyết Chương 4: Đường thẳng và mặt phẳng. Quan hệ song song trong không gian
Lý thuyết Chương 5: Các số đặc trưng đo xu thế trung tâm cho mẫu số liệu ghép nhóm