Lý thuyết Toán lớp 11 Bài 5: Phương trình lượng giác cơ bản
A. Lý thuyết Phương trình lượng giác cơ bản
1. Phương trình tương đương
– Hai phương trình được gọi là tương đương khi chúng có cùng tập nghiệm.
– Nếu phương trình f(x) =0 tương đương với phương trình g(x) =0 thì ta viết
– Các phép biến đổi tương đương:
+ Cộng hay trừ hai vế với cùng một số hoặc cùng một biểu thức.
+ Nhân hoặc chia 2 vế với cùng một số khác 0 hoặc với cùng một biểu thức luôn có giá trị khác 0.
2. Phương trình
Phương trình sinx = m ,
- Nếu thì phương trình vô nghiệm.
- Nếu thì phương trình có nghiệm:
Khi đó, tồn tại duy nhất thoả mãn ,
* Chú ý:
a, Nếu số đo của góc được cho bằng đơn vị độ thì
b, Một số trường hợp đặc biệt
3. Phương trình
Phương trình ,
- Nếu thì phương trình vô nghiệm.
- Nếu thì phương trình có nghiệm:
Khi sẽ tồn tại duy nhất thoả mãn . Khi đó:
* Chú ý:
a, Nếu số đo của góc được cho bằng đơn vị độ thì
b, Một số trường hợp đặc biệt
4. Phương trình
Phương trình có nghiệm với mọi m.
Với mọi , tồn tại duy nhất thoả mãn . Khi đó:
*Chú ý: Nếu số đo của góc được cho bằng đơn vị độ thì
5. Phương trình
Phương trình có nghiệm với mọi m.
Với mọi , tồn tại duy nhất thoả mãn . Khi đó:
*Chú ý: Nếu số đo của góc được cho bằng đơn vị độ thì
6. Giải phương trình lượng giác bằng máy tính cầm tay
Bước 1. Chọn đơn vị đo góc (độ hoặc radian).
Muốn tìm số đo độ, ta ấn: SHIFT MODE 3 (CASIO FX570VN).
Muốn tìm số đo radian, ta ấn: SHIFT MODE 4 (CASIO FX570VN).
Bước 2. Tìm số đo góc.
Khi biết SIN, COS, TANG của góc ta cần tìm bằng m, ta lần lượt ấn các phím SHIFT và một trong các phím SIN, COS, TANG rồi nhập giá trị lượng giác m và cuối cùng ấn phím “BẰNG =”. Lúc này trên màn hình cho kết quả là số đo của góc .
B. Bài tập Phương trình lượng giác cơ bản
Bài 1. Giải các phương trình lượng giác sau:
a) 2sin2x + 2sinx.cosx – 5cos2x = 0
b)
Hướng dẫn giải
a)
⇔
Vậy phương trình đã cho có nghiệm là hoặc (k ∈ ℤ).
b)
⇔
⇔
⇔
Vậy phương trình đã cho có nghiệm là hoặc (k ∈ ℤ).
Bài 2. Giải phương trình: cos3x.tan5x = sin7x.
Hướng dẫn giải
Điều kiện cos 5x ≠ 0
Khi đó phương trình đã cho trở thành
2sin5x.cos3x = 2sin7x.cos5x
⇔ sin8x = sin12x
• Với thì ta có:
⇔ k = 2m (m ∈ ℤ)
• Với thì ta có:
Vậy phương trình đã cho có nghiệm là (m, k ∈ ℤ).
Bài 3. Tìm x ∈ [0; 14] sao cho: cos3x – 4cos2x + 3cos x – 4 = 0. (1)
Hướng dẫn giải
Ta có: cos3x = 4cos3x – 3cosx
(1) ⇔ cos3x + 3cos x – 4(1 + cos2x) = 0
⇔ 4cos3x – 8cos2x = 0
⇔ 4cos3x.(cos x – 2) = 0
⇔ cos x = 0
⇔ (k ∈ ℤ)
Vì x ∈ [0; 14] ⇒ {}
Vậy {}
Video bài giảng Toán 11 Bài 5: Phương trình lượng giác – Chân trời sáng tạo
Xem thêm các bài tóm tắt lý thuyết Toán lớp 11 Chân trời sáng tạo hay, chi tiết khác:
Lý thuyết Bài 4: Hàm số lượng giác và đồ thị
Lý thuyết Bài 5: Phương trình lượng giác cơ bản
Lý thuyết Bài 1: Dãy số
Lý thuyết Bài 2: Cấp số cộng
Lý thuyết Bài 3: Cấp số nhân
Lý thuyết Bài 1: Giới hạn của dãy số
Xem thêm các bài tóm tắt lý thuyết chương Toán lớp 11 Chân trời sáng tạo hay, chi tiết khác:
Lý thuyết Chương 1: Hàm số lượng giác và phương trình lượng giác
Lý thuyết Chương 2: Dãy số. Cấp số cộng. Cấp số nhân
Lý thuyết Chương 3: Giới hạn. Hàm số liên tục
Lý thuyết Chương 4: Đường thẳng và mặt phẳng. Quan hệ song song trong không gian
Lý thuyết Chương 5: Các số đặc trưng đo xu thế trung tâm cho mẫu số liệu ghép nhóm