Bài tập Toán 11 Công thức lượng giác
A. Bài tập Công thức lượng giác
Bài 1. Tính sin2a và tan2a biết cos a = và <a<2.
Hướng dẫn giải
Vì <a<2nên sina < 0.
Ta có:
sin2a + cos2a = 1 ⇒ sin2a = 1 – cos2a = 1 – =
⇒ sina = .
Ta có: sin2a = 2sina cosa = 2.. =
Ta có: tana =
⇒==.
Bài 2. Tính
a) sin biết sin a = và 0 < a < ;
b) cos.cos + sin.sin.
Hướng dẫn giải
a) Vì 0<a< nên cosa > 0.
Ta có: sin2a + cos2a = 1 ⇒ cos2a = 1 – sin2a = 1-=
⇒ cosa = null.
Vậy sin .
Suy ra: .
Bài 3. Tính
a) cos(–15°) + cos255°;
b) sinsin.
Hướng dẫn giải
a) Ta có:
cos(-15o) + cos255o = 2.cos.cos
= 2.cos120o.cos(135o) = 2
Vậy cos(–15°) + cos255° = .
b) Ta có:
Vậy .
Bài 4. Rút gọn biểu thức sau:
Hướng dẫn giải
⇔
Vậy P = −2sin x.
Bài 5. Chứng minh rằng:
Hướng dẫn giải
Ta có:
Bài 6. Cho và Tính các giá trị lượng giác của góc 2α.
Hướng dẫn giải
Do ⇒ cos α < 0.
Ta có:
⇒ (do cos α < 0).
Bài 7. Tính α + β biết .
Hướng dẫn giải
Áp dụng công thức cộng đối với tang, ta được:
Vậy .
Bài 8. Cho , với . Tính sina, cosa, , sin2a, .
Hướng dẫn giải
Vì nên sina > 0, cosa > 0.
• Áp dụng công thức hạ bậc, ta được:
Suy ra (do sina > 0)
• Áp dụng công thức hạ bậc, ta được: .
Suy ra .
• Áp dụng công thức cộng đối với sin, ta được:
.
• Áp dụng công thức nhân đôi, ta được:
.
• Áp dụng công thức cộng đối với côsin, ta được:
Bài 9. Chứng minh rằng:
a) ;
Hướng dẫn giải
a) VT = cos3x.sinx – sin3x.cosx
= cosx.sinx.(cos2x – sin2x)
= VP.
Vậy ta có điều phải chứng minh.
Bài 10. Cho ∆ABC. Chứng minh rằng:
a) ;
b) ;
c) , với R là bán kính đường tròn ngoại tiếp ∆ABC và S là diện tích ∆ABC.
Hướng dẫn giải
∆ABC, có: , suy ra
Do đó .
b)
Vậy ta có điều phải chứng minh.
c) VT = sin2A + sin2B + sin2C
= 2sin(A + B).cos(A – B) + 2sinC.cosC
= 2sin(180° – C).cos(A – B) + 2sinC.cosC
= 2sinC.cos(A – B) + 2sinC.cosC
= 2sinC.[cos(A – B) + cosC]
= 2sinC.[cos(A – B) + cos(180° – A – B)]
= 2sinC.[cos(A – B) – cos(A + B)]
= –4sinC.sinA.sin(–B)
= 4sinA.sinB.sinC
.
Vậy ta có điều phải chứng minh.
B. Lý thuyết Công thức lượng giác
1. Công thức cộng
cos (a – b) = cosa cosb + sina sinb
cos (a + b) = cosa cosb – sina sinb
sin (a – b) = sina cosb – cosa sinb
sin (a + b) = sina cosb + cosa sinb
tan (a-b) =
tan (a+b) =
(giả thiết các biểu thức đều có nghĩa).
Ví dụ: Không dùng máy tính, hãy tính sin và tan 15°.
Hướng dẫn giải
Ta có
sin = -sin = -sin
= -sincos – cossin = -0. – (-1). = .
Ta có
tan15o = tan(60o – 45o) =
2. Công thức nhân đôi
sin2a = 2sina cosa
cos2a = cos2a – sin2a = 2cos2 – 1 = 1 – 2sin2a
tan2a = .
Chú ý: Từ công thức nhân đôi suy ra công thức hạ bậc:
.
Ví dụ: Biết sinα = và 0 < α < . Tính sin2α ; cos2α và tan2α.
Hướng dẫn giải
Vì 0 < α < nên cosα > 0.
Ta có:
sin2α + cos2α = 1 ⇒ cos2α = 1 – sin2α = 1-=
⇒ cosα = .
Ta có: sin2α = 2sinα cosα =
cos2α = 1 – 2sin2α = 1 – 2.=
⇒ tan.
3. Công thức biến đổi tích thành tổng
cosacosb = [cos(a-b) + cos(a+b)]
sinasinb = [cos(a-b) – cos(a+b)]
sinacosb = [sin(a-b) + sin(a+b)].
Ví dụ: Tính giá trị của biểu thức
a) A = ;
b) B = .
Hướng dẫn giải
a) Ta có:
Vậy A = .
b) Ta có:
Vậy B = .
4. Công thức biến đổi tổng thành tích
cosu + cosv = 2coscos
cosu – cosv = -2sinsin
sinu + sinv = 2sincos
sinu – sinv = 2cossin.
Ví dụ: ChoA = cos.cos và B = cos + cos. Không dùng máy tính, tính giá trị của biểu thức .
Hướng dẫn giải
Ta có:
B = cos + cos = 2.cos.cos
= 2.cos.cos = 2cos.cos.
Suy ra .
Video bài giảng Toán 11 Bài 2: Công thức lượng giác – Kết nối tri thức