Chuyên đề Tính đơn điệu của hàm số
Phần 1: Cách xét tính đơn điệu của hàm số cực hay
A. Phương pháp giải & Ví dụ
Phương pháp giải
1. Định nghĩa: Cho hàm số y = f(x) xác định trên K, với K là một khoảng, nửa khoảng hoặc một đoạn.
Hàm số y = f(x) đồng biến (tăng) trên K nếu ∀x1, x2 ∈ K, x1 < x2 ⇒ f(x1) < f(x2).
Hàm số y = f(x) nghịch biến (giảm) trên K nếu ∀x1, x2 ∈ K, x1 < x2 ⇒ f(x1) > f(x2).
2. Điều kiện cần để hàm số đơn điệu: Giả sử hàm số y = f(x) có đạo hàm trên khoảng K.
Nếu hàm số đồng biến trên khoảng K thì f'(x) ≥ 0,∀x ∈ K và f'(x) = 0 xảy ra tại một số điểm hữu hạn.
Nếu hàm số nghịch biến trên khoảng K thì f'(x) ≤ 0,∀x ∈ K và f'(x) = 0 xảy ra tại một số điểm hữu hạn.
3. Điều kiện đủ để hàm số đơn điệu: Giả sử hàm số y = f(x) có đạo hàm trên khoảng K.
Nếu f'(x) > 0,∀x ∈ K thì hàm số đồng biến trên khoảng K.
Nếu f'(x) < 0,∀x ∈ K thì hàm số nghịch biến trên khoảng K.
Nếu f'(x) = 0,∀x ∈ K thì hàm số không đổi trên khoảng K.
4. Các bước xét tính đơn điệu của một hàm số cho trước
Bước 1: Tìm tập xác định của hàm số y = f(x)
Bước 2: Tính đạo hàm f'(x) và tìm các điểm xo sao cho f'(xo) = 0 hoặc f'(xo) không xác định.
Bước 3: Lập bảng xét dấu và đưa ra kết luận
Ví dụ minh họa
Ví dụ 1: Xét tính đồng biến và nghịch biến của hàm số sau y=x3 – 6x2 + 9x -3
Hướng dẫn
Tập xác định: D = R
Ta có y’ = 3x2 – 12x + 9
y’ = 0 ⇔
Bảng biến thiên:
Vậy hàm số đồng biến trên các khoảng (-∞;1) và (3;+∞)
Hàm số nghịch biến trên khoảng (1;3)
Ví dụ 2: Xét tính đồng biến và nghịch biến của hàm số sau √(2x-x2)
Hướng dẫn
Tập xác định D = [0; 2]
Ta có : y’ = y’ = 0 ⇔ x=1
Bảng biến thiên
Vậy hàm số đồng biến trên khoảng (0; 1); Hàm số nghịch biến trên khoảng (1; 2)
Ví dụ 3: Xét tính đồng biến và nghịch biến của hàm số sau y = (3x + 1)/(1 – x)
Hướng dẫn
Hàm số xác định và liên tục trên D = R\{1}.
Tìm y’ = > 0; ∀x ≠ 1.
Bảng biến thiên:
Hàm số đã cho đồng biến trên các khoảng (-∞ ; 1)và (1 ; +∞).
Phần 2: Tìm tham số m để hàm số đơn điệu cực hay
A. Phương pháp giải & Ví dụ
Phương pháp giải
1. Hàm đa thức bậc ba: y=f(x)=ax3+bx2+cx+d (a≠0)
⇒ f'(x)=3ax2+2bx+c
Hàm đa thức bậc ba y=f(x) đồng biến trên R khi và chỉ khi
Hàm đa thức bậc ba y=f(x) nghịch biến trên R khi và chỉ khi
2. Hàm phân thức bậc nhất:
Hàm số đồng biến trên các khoảng xác định khi y’>0 hay ad-bc>0
Hàm số nghịch biến trên các khoảng xác định khi y’>0 hay ad-bc<0
Ví dụ minh họa
Ví dụ 1: Cho hàm số đồng biến trên tập xác định.
Hướng dẫn
+ Tập xác định: D=R
+ Ta có: y’=x2+2(m+1)x-(m+1)
+ Δ’=(m+1)2+4(m+1)=m2+6m+5
+ Để hàm số đồng biến trên tập xác định thì
Vậy giá trị của tham số cần tìm là -5≤m≤-1
Ví dụ 2: Cho hàm số . Tìm giá trị của m để hàm số luôn đồng biến trên R.
Hướng dẫn
+ Tập xác định: D=R
+ Đạo hàm y’≠(m2-m) x2+4mx+3
+ Hàm số luôn đồng biến trên R y’≥0 ∀ x∈R
Xét m2-m=0 ⇒
Với m=0 phương trình trở thành y=3x-1;y’=3>0 ∀x∈R
⇒ m=0 thỏa mãn yêu cầu bài toán.
Với m=1 phương trình trở thành y=2x2+3x-1;y’=4x+3
Khi đó y’>0 4x+3>0 x<-3/4
⇒ m=1 không thỏa mãn yêu cầu bài toán.
Xét m2-m≠0
Khi đó
Từ hai trường hợp trên ta có giá trị m cần tìm là -3≤m<0
Ví dụ 3: Cho hàm số . Tìm m để hàm số đồng biến trên từng khoảng xác định.
Hướng dẫn
+ Tập xác định: D=R\{m}
+ Đạo hàm . Dấu của y’ là dấu của biểu thức -m2-7m+8
+ Hàm số đồng biến trên từng khoảng xác định y’>0 ∀x∈D
-m2-7m+8>0 -8<m<1
Vậy giá trị m cần tìm là -8<m<1
Phần 3: Phương pháp cô lập m trong khảo sát tính đơn điệu của hàm số cực hay
A. Phương pháp giải & Ví dụ
Phương pháp giải
Bước 1: Tìm y’
Hàm số đồng biến trên khoảng K khi và chỉ khi y’ ≥ 0 ∀ x ∈ K
Hàm số nghịch biến trên khoảng K khi và chỉ khi y’ ≤ 0 ∀x ∈ K
Bước 2: Cô lập tham số m đưa về dạng m≥g(x) hoặc m ≤ g(x)
Bước 3: Vẽ bảng biến thiên của g(x)
Bước 4: Kết luận
m ≥ g(x) ∀ x ∈ K khi và chỉ khi m ≥
m ≤ g(x) ∀ x ∈ K khi và chỉ khi m ≤
Một số hàm số thường gặp
Hàm đa thức bậc ba: y = f(x) = ax3 + bx2 + cx + d (a ≠ 0)
⇒ f'(x) = 3ax2 + 2bx + c
Với a > 0 và f'(x) có hai nghiệm phân biệt x1 < x2
Hàm số đồng biến trên (α; β) khi và chỉ khi β ≤ xc hoặc α ≥ x2
Hàm số nghịch biến trên (α; β) khi và chỉ khi x1 ≤ α < β ≤ x2
Với a <0 và f'(x) có hai nghiệm phân biệt x1 < x2
Hàm số đồng biến trên (α; β) khi và chỉ khi x1 ≤ α < β ≤ x2
Hàm số nghịch biến trên (α; β) khi và chỉ khi β≤x1 hoặc α ≥ x2
Hàm phân thức bậc nhất: y = (ax + b)/(cx + d) ⇒ y’= (ad – bc)/(cx + d)2
Hàm số đồng biến trên khoảng K khi và chỉ khi ad-bc>0 và -d/c ∉ K
Hàm số nghịch biến trên khoảng K khi và chỉ khi ad – bc < 0 và -d/c ∉ K
Ví dụ minh họa
Ví dụ 1: Tìm m để hàm số y = x3/3 – mx2+(1 – 2m)x- 1 đồng biến trên (1; +∞)
Hướng dẫn
TXĐ: D = R
Ta có y’ = x2 – 2mx + 1 – 2m
Hàm số đã cho đồng biến trên (1; +∞)⇔ ∀ x ∈(1; +∞),y’ ≥ 0
⇔ ∀ x ∈ (1; +∞), x2 -2mx + 1 – 2m ≥ 0 ⇔ ∀ x ∈(1; +∞), x2 + 1 ≥ 2m(x + 1)
⇔ ∀ x ∈(1; +∞),2m ≤ (x2 + 1)/(x + 1) (do x + 1 > 0 khi x > 1)
Xét hàm số f(x) = (x2 + 1)/(x + 1), x ∈ (1; +∞)
f'(x) = (x2 + 2x – 1)/(x + 1)2 >0 với mọi x (1;+∞)
Ta có bảng biến thiên:
Dựa vào bảng biến thiên để 2m ≤ f(x),∀ x ∈(1; +∞) thì 2m ≤ 1 ⇔ m ≤ 1/2
Ví dụ 2: Tìm giá trị của tham số m để hàm số y = (2x – 1)/(x – m) nghịch biến trên khoảng (2; 3)
Hướng dẫn
TXĐ: D=R\{m}.
Ta có y’= (-2m + 1)/(x – m)2 . Để hàm số nghịch biến trên khoảng (2; 3) thì hàm só phải xác định trên khoảng (2; 3) và y’ < 0 ∀ x ∈ (2; 3).
Vậy giá trị của tham số m cần tìm là
Ví dụ 3: Tìm các giá trị m để hàm số y = mx3 – x2 + 3x + m – 2 đồng biến trên (-3 ; 0)
Hướng dẫn
TXĐ: D = R
Ta có y’= 3mx2 – 2x + 3. Hàm số đồng biến trên khoảng (-3; 0) khi và chỉ khi:
y’ ≥ 0,∀ x ∈(-3; 0) (Dấu ” = ” xảy ra tại hữu hạn điểm trên (-3; 0))
⇔ 3mx2 – 2x + 3 ≥ 0, ∀ x ∈(-3; 0)
⇔ m ≥(2x-3)/(3x2 ) = g(x) ∀ x ∈(-3;0)
Ta có: g'(x) = (-2x + 6)/(3x3 ); g'(x) = 0 ⇔ x = 3
Bảng biến thiên
Vậy m ≥ = -1/3.
Phần 4: Tìm tham số m để hàm số đơn điệu trên đoạn có độ dài l cực hay
A. Phương pháp giải & Ví dụ
Phương pháp giải
Tìm m để hàm số y = ax3 + bx2 + cx + d có độ dài khoảng đồng biến (nghịch biến) = l.
Bước 1: Tính y’=f'(x).
Bước 2: Tìm điều kiện để hàm số có khoảng đồng biến và nghịch biến: (1).
Bước 3: Biến đổi |x1-x2 | = l thành (x1+x2 )2 – 4x1.x2=l2 (2).
Bước 4: Sử dụng định lý Viét đưa (2) thành phương trình theo m.
Bước 5: Giải phương trình, so với điều kiện (1) để chọn nghiệm.
Kiến thức cần nhớ
Hàm đa thức bậc ba: y = f(x) = ax3+bx2+ cx + d (a ≠ 0) ⇒ f'(x)=3ax2+ 2bx + c
Sử dụng định lý vi ét cho tam thức bậc hai f'(x)= 3ax2 + 2bx + c có
Ví dụ minh họa
Ví dụ 1: Tìm tất cả các giá trị thực của tham số m sao cho hàm số y = 1/3 x3 – 2mx2 + 2mx – 3m + 4 nghịch biến trên một đoạn có độ dài là 3.
Hướng dẫn
Ta có f'(x) = x2 – 4mx + 2m
Hàm số nghịch biến trên khoảng có độ dài bằng 3 khi và chỉ khi f'(x)= 0 có hai nghiệm phân biệt x1,x2 (x1 < x2) thỏa mãn |x1-x2 |=3
+ f'(x)= 0 có hai nghiệm phân biệt x1,x2 ⇔ Δ’= 4m2 – 2m > 0 ⇔
Theo Vi ét ta có
+ Với |x1-x2 | = 3 ⇔ (x1 + x1)2 – 4x1 x2 – 9 = 0
(thỏa mãn)
Vậy giá trị của m cần tìm là m=.
Ví dụ 2: Tìm m để hàm số y = -x3 + 3x2 + (m-1)x + 2m – 3 đồng biến trên một khoảng có độ dài nhỏ hơn 1
Hướng dẫn
Ta có f'(x)= -3x2 + 6x + m – 1
Hàm số đồng biến trên khoảng có độ dài lớn hơn 1 khi và chỉ khi f'(x) = 0 có hai nghiệm phân biệt x1,x2 (x1 < x2) thỏa mãn |x1-x2 | > 1
+ f'(x)= 0 có hai nghiệm phân biệt x1,x2 ⇔ Δ’= 3m + 6 > 0 ⇔ m > -2
Theo Vi ét ta có
+ Với |x1-x2 | > 1 ⇔ (x1+x2 )2-4x1 x2-1 > 0 ⇔ 4m + 5 > 0 ⇔ m > -5/4
Kết hợp điều kiện ta được m > -5/4
Ví dụ 3: Xác định m để hàm só y = -x4 +(m – 2) x2 + 1 có khoảng nghịch biến (x1;x2) và độ dài khoảng này bằng 1.
Hướng dẫn
Ta có y’ = -4x3 + 2(m – 2)x
Để hàm số có khoảng nghịch biến (x1;x2) thì phương trình -2x2 + m – 2 = 0 phải có hai nghiệm phân biệt
Giả sử x1 < 0 < x2, khi đó hàm số sẽ nghịch biến trên khoảng (x1;0) và (x2; +∞)
Vì độ dài khoảng nghịch biến bằng 1 nên khoảng (x1;0) có độ dài bằng 1 hay x1 = -1
Vì -2x2 + m – 2 = 0 có một nghiệm là -1 nên -2 + m – 2 = 0 ⇔ m = 4 (thỏa mãn)
Vậy giá trị của tham số m cần tìm là m = 4
Phần 5: Cách xét tính đơn điệu của hàm đa thức cực hay, có lời giải
A. Phương pháp giải
Bước 1: Tìm tập xác định D.
Bước 2: Tính đạo hàm y’ = f'(x).
Bước 3: Giải phương trình f'(x) = 0.
Bước 4: Lập bảng biến thiên.
Bước 5: Kết luận.
B. Ví dụ minh họa
Ví dụ 1: Tìm khoảng đồng biến của hàm số y = -x3 + 6x2 – 9x + 4
A. (0;3)
B. (1;3)
C. (-∞;0)
D. (2;+∞)
Lời giải
Chọn B
Bảng biến thiên:
Dựa vào bảng biến thiên, hàm số đồng biến trên khoảng (1;3).
Ví dụ 2: Cho hàm số: y = f(x) = x3 + 3x2 + 3x + 2. Hãy chọn câu đúng:
A. Hàm số f(x) nghịch biến trên R
B. Hàm số f(x) đồng biến trên R
C. Hàm số f(x) không đổi trên R
D. Hàm số f(x) nghịch biến trên (-∞;-1)
Lời giải
Chọn B
Bảng biến thiên:
Ví dụ 3: Tìm khoảng đồng biến của hàm số: y = -x4 + 4x2 – 3.
Lời giải
Chọn C
Bảng biến thiên:
Phần 6: Cách xét tính đơn điệu của hàm số lượng giác cực hay, có lời giải
A. Phương pháp giải
Bước 1: Tìm tập xác định D.
Bước 2: Tính đạo hàm y’ = f'(x).
Bước 3: Tìm nghiệm của f'(x) hoặc những giá trị x làm cho f'(x) không xác định.
Bước 4: Lập bảng biến thiên.
Bước 5: Kết luận.
B. Ví dụ minh họa
Ví dụ 1: Tìm các khoảng đồng biến của hàm số: y = 2sinx + cos2x, x ∈ [0;π]
Lời giải
Chọn C
Bảng biến thiên
Ví dụ 2: Tìm các khoảng nghịch biến của hàm số: y = sin2x + cosx, x ∈ (0;π).
Lời giải
Chọn B
Bảng biến thiên
Ví dụ 3: Cho hàm số: y = f(x) = x – sinx, x ∈ [0;π]. Hãy chọn câu đúng?
Lời giải
Chọn A
Bảng biến thiên
Phần 7: Cách xét tính đơn điệu của hàm phân thức cực hay, có lời giải
A. Phương pháp giải
Bước 1: Tìm tập xác định D.
Bước 2: Tính đạo hàm y’ = f'(x).
Bước 3: Tìm nghiệm của f'(x) hoặc những giá trị x làm cho f'(x) không xác định.
Bước 4: Lập bảng biến thiên.
Bước 5: Kết luận.
B. Ví dụ minh họa
Ví dụ 1: Tìm khoảng đồng biến của hàm số:
A. (0;+∞)
B. (-∞;2)
C. (-∞;1) và (1;+∞)
D. (-∞;+∞)
Lời giải
Chọn C
Bảng biến thiên:
Hàm số đã cho đồng biến trên các khoảng (-∞;1) và (1;+∞).
Ví dụ 2: Tìm khoảng nghịch biến của hàm số: .
A. (-∞;7)
B. (-∞;+∞)
C. (-∞;-7) và (-7;+∞)
D. (-10;+∞)
Lời giải
Chọn C
Bảng biến thiên
Hàm số đã cho luôn nghịch biến trên: (-∞;-7) và (-7;+∞).
Ví dụ 3: Tìm khoảng nghịch biến của hàm số:
A. (-∞;-5) và (1;+∞)
B. (-5;-2)
C. (-∞;-2) và (-2;+∞)
D. (-2;1)
Lời giải
Chọn A
Bảng biến thiên
Dựa vào bảng biến thiên, hàm số nghịch biến trên các khoảng (-∞;-5) và (1;+∞)
Xem thêm