Câu hỏi:
Bác Tùng gửi vào ngân hàng 200 triệu đồng theo thể thức lãi kép theo định kì với lãi suất không đổi x mỗi năm (tức là nếu đến kì hạn người gửi không rút lãi ra thì tiền lãi được tính vào vốn của kì kế tiếp). Biểu thức S = 200(1 + x)3 (triệu đồng) là số tiền bác Tùng nhận được sau 3 năm.
a) Tính số tiền bác Tùng nhận được sau 3 năm khi lãi suất x = 5,5%.
Trả lời:
a) Thay x = 5,5% vào biểu thức S, ta được:
200(1 + x)3 = 200 . (1 + 5,5%)3 = 200 . 1,0053 ≈ 234,848.
Vậy số tiền bác Tùng nhận được sau 3 năm khi lãi suất x = 5,5% khoảng 234,848 triệu đồng.
====== **** mời các bạn xem câu tiếp bên dưới **** =====
- Tính nhanh giá trị biểu thức
x2+12x+116 tại x = 99,75.
Câu hỏi:
Tính nhanh giá trị biểu thức
tại x = 99,75.Trả lời:
Ta có .
Thay x = 99,75 vào biểu thức (x + 0,25)2, ta được:
(99,75 + 0,25)2 = 1002 = 10 000.
Vậy tại x = 99,75 thì giá trị của biểu thức đã cho bằng 10 000.====== **** mời các bạn xem câu tiếp bên dưới **** =====
- Chứng minh đẳng thức (10a + 5)2 = 100a(a + 1) + 25. Từ đó em hãy nêu một quy tắc tính nhẩm bình phương của một số có tận cùng là 5.
Áp dụng: Tính 252; 352.
Câu hỏi:
Chứng minh đẳng thức (10a + 5)2 = 100a(a + 1) + 25. Từ đó em hãy nêu một quy tắc tính nhẩm bình phương của một số có tận cùng là 5.
Áp dụng: Tính 252; 352.Trả lời:
Ta có (10a + 5)2 = (10a)2 + 2 . 10a . 5 + 52
= 100a2 + 100a + 25 = 100a(a + 1) + 25.
Từ đó ta rút ra quy tắc tính nhẩm bình phương của một số có tận cùng là 5 là:
Bình phương của một số tự nhiên có chữ số tận cùng là 5 bằng 100 lần tích của số tạo bởi các chữ số trước số tận cùng với số liền sau của số tạo bởi các chữ số tận cùng rồi cộng với 25.
Áp dụng:
• 252 = 100 . 2 . (2 + 1) + 25 = 100 . 2 . 3 + 25
= 600 + 25 = 625;
• 352 = 100 . 3 . (3 + 1) + 25 = 100 . 3 . 4 + 25
= 1 200 + 25 = 1 225.====== **** mời các bạn xem câu tiếp bên dưới **** =====
- Tính nhanh giá trị của các biểu thức:
a) x3 + 3×2 + 3x + 1 tại x = 99;
Câu hỏi:
Tính nhanh giá trị của các biểu thức:
a) x3 + 3x2 + 3x + 1 tại x = 99;Trả lời:
a) Ta có x3 + 3x2 + 3x + 1
= x3 + 3 . x2 . 1 + 3 . x . 12 + 13 = (x + 1)3.
Thay x = 99 vào biểu thức (x + 1)3, ta được:
(99 + 1)3 = 1003 = 1 000 000.====== **** mời các bạn xem câu tiếp bên dưới **** =====
- b) x3 – 3x2y + 3xy2 – y3 tại x = 88 và y = –12.
Câu hỏi:
b) x3 – 3x2y + 3xy2 – y3 tại x = 88 và y = –12.
Trả lời:
b) Ta có x3 – 3x2y + 3xy2 – y3 = (x – y)3.
Thay x = 88 và y = –12 vào biểu thức (x – y)3, ta được:
[88 – (–12)]3 = (88 + 12)3 = 1003 = 1 000 000.====== **** mời các bạn xem câu tiếp bên dưới **** =====
- Rút gọn các biểu thức:
a) (x – 2)3 + (x + 2)3 – 6x(x + 2)(x – 2);
Câu hỏi:
Rút gọn các biểu thức:
a) (x – 2)3 + (x + 2)3 – 6x(x + 2)(x – 2);Trả lời:
a) (x – 2)3 + (x + 2)3 – 6x(x + 2)(x – 2)
= [(x – 2) + (x + 2)]3 – 3(x – 2)2(x + 2) + 3(x – 2)(x + 2)2 – 6x(x + 2)(x – 2)
= (x – 2 + x + 2)3 – [3(x – 2)2(x + 2) – 3(x – 2)(x + 2)2] – 6x(x + 2)(x – 2)
= (2x)3 – 3(x – 2)(x + 2)[(x – 2) – (x + 2)] – 6x(x + 2)(x – 2)
= 8x3 – 3(x – 2)(x + 2) . (–2x) – 6x(x + 2)(x – 2)
= 8x3 + 6x(x + 2)(x – 2) – 6x(x + 2)(x – 2) = 8x3.====== **** mời các bạn xem câu tiếp bên dưới **** =====