Câu hỏi:
Cho ∆ABC đều. Trên các cạnh AB, BC, CA lấy theo thứ tự ba điểm M, N, P sao cho AM = BN = CP. Giao điểm của ba đường trung trực của ∆MNP là
A. Điểm B;
B. Trung điểm của cạnh NP;
C. Trung điểm của cạnh MN;
D. Giao điểm của ba đường trung trực của ∆ABC.
Đáp án chính xác
Trả lời:
Đáp án đúng là: D
Ta có AC = BC (do ∆ABC đều) và CP = BN (giả thiết).
Suy ra AC – CP = BC – BN.
Do đó AP = CN.
Xét ∆MAP và ∆PCN, có:
AM = CP (giả thiết).
(do ∆ABC đều).
AP = CN (chứng minh trên).
Do đó ∆MAP = ∆PCN (c.g.c)
Suy ra MP = PN (cặp cạnh tương ứng) (1).
Chứng minh tương tự, ta được MN = PN (2).
Từ (1), (2), ta suy ra MP = MN = PN.
Do đó ∆MNP đều.
Gọi O là giao điểm của các đường trung trực của ∆ABC
Khi đó OA = OB = OC (tính chất ba đường trung trực của tam giác)
Xét DBOA và DBOC có:
BA = BC (do ∆ABC đều),
BO là cạnh chung,
OA = OC (chứng minh trên)
Do đó DBOA = DBOC (c.c.c)
Suy ra (hai góc tương ứng)
Ta suy ra BO cũng là đường phân giác của ∆ABC.
Do đó .
Chứng minh tương tự, ta được:
và .
Xét ∆MAO và ∆NBO, có:
OA = OB (chứng minh trên).
(= 30°).
AM = BN (giả thiết).
Do đó ∆MAO = ∆NBO (c.g.c)
Suy ra MO = NO (cặp cạnh tương ứng) (3).
Chứng minh tương tự, ta được NO = PO (4).
Từ (3), (4), ta suy ra OM = ON = OP.
Do đó O là giao điểm của ba đường trung trực của ∆MNP.
Vì vậy giao điểm của ba đường trung trực của ∆MNP là giao điểm của ba đường trung trực của ∆ABC.
Vậy ta chọn đáp án D.
====== **** mời các bạn xem câu tiếp bên dưới **** =====
- Cho ∆ABC, gọi I là giao điểm của hai đường trung trực của hai cạnh AB và AC. Kết quả nào dưới đây đúng?
Câu hỏi:
Cho ∆ABC, gọi I là giao điểm của hai đường trung trực của hai cạnh AB và AC. Kết quả nào dưới đây đúng?
A. IA > IB > IC;
B. IA = IB = IC;
Đáp án chính xác
C. IA < IB < IC;
D. Không thể so sánh được độ dài của IA, IB, IC.
Trả lời:
Đáp án đúng là: B
∆ABC có I là giao điểm của hai đường trung trực của hai cạnh AB và AC.
Suy ra I cũng thuộc đường trung trực của cạnh BC.
Vì giao điểm I của ba đường trung trực cách đều ba đỉnh của ∆ABC.
Nên IA = IB = IC.
Vậy ta chọn đáp án B.====== **** mời các bạn xem câu tiếp bên dưới **** =====
- Cho ∆ABC có M là trung điểm của BC. Các đường trung trực của AB và AC cắt nhau tại O. Số đo OMB^ bằng:
Câu hỏi:
Cho ∆ABC có M là trung điểm của BC. Các đường trung trực của AB và AC cắt nhau tại O. Số đo bằng:
A. 30°;
B. 45°;
C. 60°;
D. 90°.
Đáp án chính xác
Trả lời:
Đáp án đúng là: D
Vì ba đường trung trực của ∆ABC cùng đi qua một điểm nên giao điểm O của hai đường trung trực của các cạnh AB, AC cũng thuộc đường trung trực của cạnh BC.
Do đó OM là đường trung trực thứ ba của ∆ABC.
Suy ra OM ⊥ BC.
Nên .
Vậy ta chọn đáp án D.====== **** mời các bạn xem câu tiếp bên dưới **** =====
- Cho ∆ABC cân tại A. Gọi M là trung điểm của BC. Các đường trung trực của AB và AC cắt nhau tại E. Điểm E thuộc đường thẳng nào trong các đường thẳng sau đây.
Câu hỏi:
Cho ∆ABC cân tại A. Gọi M là trung điểm của BC. Các đường trung trực của AB và AC cắt nhau tại E. Điểm E thuộc đường thẳng nào trong các đường thẳng sau đây.
A. BC;
B. AM;
Đáp án chính xác
C. AB;
D. AC.
Trả lời:
Đáp án đúng là: B
Xét ∆MAB và ∆MAC, có:
AB = AC (do ∆ABC cân tại A),
AM là cạnh chung,
BM = CM (do M là trung điểm BC.
Do đó ∆MAB = ∆MAC (c.c.c).
Suy ra (cặp góc tương ứng).
Mà (hai góc kề bù).
Suy ra .
Do đó AM ⊥ BC tại M.
Mà M là trung điểm BC (giả thiết).
Suy ra AM là đường trung trực thứ ba của ∆ABC.
Vì vậy AM cũng đi qua giao điểm E của hai đường trung trực của AB và AC.
Do đó E ∈ AM.
Vậy ta chọn đáp án B.====== **** mời các bạn xem câu tiếp bên dưới **** =====
- Cho ∆ABC cân tại A, đường trung tuyến AM. Đường trung trực của AB cắt AM ở O. Biết OA = 4 cm. Tính OB và OC.
Câu hỏi:
Cho ∆ABC cân tại A, đường trung tuyến AM. Đường trung trực của AB cắt AM ở O. Biết OA = 4 cm. Tính OB và OC.
A. OB = OC = 2 cm;
B. OB = OC = 4 cm;
Đáp án chính xác
C. OB = OC = 8 cm;
D. OB = 2 cm; OC = 4 cm.
Trả lời:
Đáp án đúng là: B
Xét ∆ABM và ∆ACM, có:
AM là cạnh chung,
AB = AC (∆ABC cân tại A),
BM = CM (AM là đường trung tuyến của ∆ABC)
Do đó ∆ABM = ∆ACM (c.c.c).
Suy ra (cặp góc tương ứng).
Ta có (hai góc kề bù).
Suy ra .
Vì vậy AM ⊥ BC.
Mà M là trung điểm BC (AM là đường trung tuyến của ∆ABC).
Do đó AM là đường trung trực của BC của ∆ABC.
Mà đường trung trực của AB cắt AM tại O
Khi đó O là giao điểm hai đường trung trực của tam giác nên cách đều các đỉnh
Suy ra OB = OC = OA = 4 cm.
Vậy ta chọn đáp án B.====== **** mời các bạn xem câu tiếp bên dưới **** =====
- Cho ∆ABC có O là giao điểm của ba đường trung trực của tam giác. Biết BO cũng là tia phân giác của ABC^. Khẳng định nào sau đây sai?
Câu hỏi:
Cho ∆ABC có O là giao điểm của ba đường trung trực của tam giác. Biết BO cũng là tia phân giác của . Khẳng định nào sau đây sai?
A. ∆BOA = ∆BOC;
B. ∆BAC cân tại A;
Đáp án chính xác
C. B thuộc đường trung trực của cạnh AC;
D. .
Trả lời:
Đáp án đúng là: B
Vì O là giao điểm các đường trung trực của ∆ABC nên OA = OB = OC.
Do đó ∆OAB cân tại O và ∆OBC cân tại O.
Suy ra và (tính chất tam giác cân)
Mà (vì OB là tia phân giác của ) (1).
Ta suy ra (2).
∆ABO có: (3).
∆OBC có: (4).
Từ (1), (2), (3), (4), ta suy ra .
Do đó đáp án D đúng.
Xét ∆BOA và ∆BOC, có:
OB là cạnh chung.
(chứng minh trên).
OA = OC (chứng minh trên).
Do đó ∆BOA = ∆BOC (c.g.c)
Vì vậy đáp án A đúng.
Ta có ∆BOA = ∆BOC (chứng minh trên).
Suy ra AB = BC (cặp cạnh tương ứng).
Do đó ∆BAC cân tại B.
Vì vậy đáp án B sai.
Đến đây ta có thể chọn đáp án B.
Ta có BA = BC (chứng minh trên) và OA = OC (chứng minh trên).
Suy ra BO là đường trung trực của đoạn thẳng AC.
Vì vậy B thuộc đường trung trực của cạnh AC.
Do đó đáp án C đúng.
Vậy ta chọn đáp án B.====== **** mời các bạn xem câu tiếp bên dưới **** =====