Câu hỏi:
Ba chị Thảo, Tuyết và Chi có năng suất lao động tương ứng tỉ lệ với 2, 5, 7. Tính số tiền chị Chi được thưởng biết tổng số tiền thưởng của ba người là 21 triệu đồng.
A. 1,5 triệu đồng;
B. 3 triệu đồng;
C. 7,5 triệu đồng;
D. 10,5 triệu đồng.
Đáp án chính xác
Trả lời:
Đáp án đúng là: D.
Gọi x, y, z (triệu đồng) lần lượt là số tiền thưởng của chị Thảo, chị Tuyết và chị Chi (0 < x, y, z < 15).
Vì năng suất lao động của ba người tương ứng tỉ lệ với 2; 5; 7 nên số tiền thưởng cũng tỉ lệ thuận với 2; 5; 7. Do đó \(\frac{x}{2} = \frac{y}{5} = \frac{z}{7}\).
Mà tổng số tiền thưởng của ba người là 21 triệu đồng nên x + y + z = 21.
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\frac{x}{2} = \frac{y}{5} = \frac{z}{7} = \frac{{x + y + z}}{{2 + 5 + 7}} = \frac{{21}}{{14}} = 1,5\)
Suy ra:
+) \(\frac{x}{2} = 1,5\) nên x = 1,5.2 = 3 (thoả mãn);
+) \(\frac{y}{5} = 1,5\) nên y = 5.1,5 = 7,5 (thoả mãn);
+) \(\frac{z}{7} = 1,5\) nên z = 7.1,5 = 10,5 (thoả mãn).
Vậy số tiền thưởng của chị Chi là 10,5 triệu đồng.
====== **** mời các bạn xem câu tiếp bên dưới **** =====
- Đại lượng y tỉ lệ thuận với đại lượng x nếu:
Câu hỏi:
Đại lượng y tỉ lệ thuận với đại lượng x nếu:
A. x = ky với hằng số k ≠ 0;
B. \(y = \frac{k}{x}\) với hằng số k ≠ 0;
C. y = kx với hằng số k ≠ 0;
Đáp án chính xác
D. \(y = \frac{1}{x}\) với hằng số k ≠ 0.
Trả lời:
Đáp án đúng là: C.
Khái niệm hai đại lượng tỉ lệ thuận:
Nếu đại lượng y liên hệ với đại lượng x theo công thức y = kx (với k là một hằng số khác 0) thì ta nói y tỉ lệ thuận với x theo hệ số tỉ lệ k.====== **** mời các bạn xem câu tiếp bên dưới **** =====
- Đại lượng x tỉ lệ thuận với đại lượng y theo hệ số tỉ lệ \(\frac{1}{3}\) khi:
Câu hỏi:
Đại lượng x tỉ lệ thuận với đại lượng y theo hệ số tỉ lệ \(\frac{1}{3}\) khi:
A. xy = 3;
B. \(xy = \frac{1}{3};\)
Đáp án chính xác
C. x = 3y;
D. y = 3x.
Trả lời:
Vì đại lượng x tỉ lệ thuận với đại lượng y theo hệ số tỉ lệ \(\frac{1}{3}\) nên ta có \(x = \frac{1}{3}y\).
Suy ra y = 3x.
Vậy y = 3x.====== **** mời các bạn xem câu tiếp bên dưới **** =====
- Nếu đại lượng y tỉ lệ thuận với đại lượng x theo hệ số tỉ lệ là 2022 thì đại lượng x tỉ lệ thuận với đại lượng y theo hệ số tỉ lệ là:
Câu hỏi:
Nếu đại lượng y tỉ lệ thuận với đại lượng x theo hệ số tỉ lệ là 2022 thì đại lượng x tỉ lệ thuận với đại lượng y theo hệ số tỉ lệ là:
A. \( – \frac{1}{{2022}}\);
B. \(\frac{1}{{2022}}\);
Đáp án chính xác
C. 2022;
D. −2022.
Trả lời:
Đáp án đúng là: B.
Vì đại lượng y tỉ lệ thuận với đại lượng x theo hệ số tỉ lệ là 2022 nên y = 2022x.
Suy ra \(x = \frac{1}{{2022}}y\).
Khi đó đại lượng x tỉ lệ thuận với đại lượng y theo hệ số tỉ lệ là \(\frac{1}{{2022}}.\)====== **** mời các bạn xem câu tiếp bên dưới **** =====
- Cho biết x và y là hai đại lượng tỉ lệ thuận với nhau và khi x = −5 thì y = 10. Hệ số tỉ lệ của y đối với x là:
Câu hỏi:
Cho biết x và y là hai đại lượng tỉ lệ thuận với nhau và khi x = −5 thì y = 10. Hệ số tỉ lệ của y đối với x là:
A. 2;
B. \( – \frac{1}{2};\)
C. −2;
Đáp án chính xác
D. −50.
Trả lời:
Đáp án đúng là: C.
Gọi k là hệ số tỉ lệ của y đối với x.
Vì x và y là hai đại lượng tỉ lệ thuận với nhau nên ta có y = kx.
Khi x = −5 thì y = 10 nên 10 = k.(−5)
Do đó \(k = \frac{{10}}{{ – 5}} = – 2\).
Vậy hệ số tỉ lệ của y đối với x là −2.====== **** mời các bạn xem câu tiếp bên dưới **** =====
- Cho đại lượng y tỉ lệ thuận với đại lượng x và khi x = 5 thì y = −15. Khi y = −6 thì x có giá trị là:
Câu hỏi:
Cho đại lượng y tỉ lệ thuận với đại lượng x và khi x = 5 thì y = −15. Khi y = −6 thì x có giá trị là:
A. −18;
B. 18;
C. 2;
Đáp án chính xác
D. −2.
Trả lời:
Đáp án đúng là: C.
Gọi k là hệ số tỉ lệ của y đối với x.
Vì đại lượng y tỉ lệ thuận với đại lượng x nên ta có y = kx.
Khi x = 5 thì y = −15 nên −15 = k.5
Do đó \(k = \frac{{ – 15}}{5} = – 3\)
Vậy y = −3x.
Với y = −6 thì −3x = −6
Suy ra \(x = \frac{{ – 6}}{{ – 3}} = 2\).
Vậy x = 2.====== **** mời các bạn xem câu tiếp bên dưới **** =====