Câu hỏi:
Một mảnh vườn có diện tích là 870 m2, trong đó có \(\frac{2}{3}\) diện tích trồng cây ăn trái, 25% trồng rau, diện tích còn lại trồng hoa. Tính diện tích trồng hoa.
Trả lời:
Hướng dẫn giải
Diện tích trồng cây ăn trái của mảnh vườn là: \(\frac{2}{3}.870 = 580\)(m2).
Diện tích trồng rau của mảnh vườn là: 25% . 870 = 217,5 (m2).
Diện tích trồng hoa của mảnh vườn là: 870 – (580 + 217,5) = 72,5 (m2).
Vậy diện tích trồng hoa của mảnh vườn là 72,5 m2.
====== **** mời các bạn xem câu tiếp bên dưới **** =====
- Thực hiện phép tính:
a) (15,25 + 3,75).4 + (20,71 + 5,29).5;
b) \(\frac{4}{{20}} + \frac{{16}}{{42}} + \frac{6}{{15}} + \frac{{ – 3}}{5} + \frac{2}{{21}} + \frac{{ – 10}}{{21}} + \frac{3}{{20}}\);
c) \(\frac{5}{{11}}.\frac{5}{7} + \frac{5}{{11}}.\frac{2}{7} + \frac{6}{{11}};\)
d) \(\left( { – \frac{5}{{24}} + 0,75 + \frac{7}{{12}}} \right):\left( { – 2\frac{1}{8}} \right)\).
Câu hỏi:
Thực hiện phép tính:
a) (15,25 + 3,75).4 + (20,71 + 5,29).5;
b) \(\frac{4}{{20}} + \frac{{16}}{{42}} + \frac{6}{{15}} + \frac{{ – 3}}{5} + \frac{2}{{21}} + \frac{{ – 10}}{{21}} + \frac{3}{{20}}\);
c) \(\frac{5}{{11}}.\frac{5}{7} + \frac{5}{{11}}.\frac{2}{7} + \frac{6}{{11}};\)
d) \(\left( { – \frac{5}{{24}} + 0,75 + \frac{7}{{12}}} \right):\left( { – 2\frac{1}{8}} \right)\).Trả lời:
Hướng dẫn giải:
a) (15,25 + 3,75).4 + (20,71 + 5,29).5
= 19.4 + 26.5
= 76 + 130
= 206
b) \(\frac{4}{{20}} + \frac{{16}}{{42}} + \frac{6}{{15}} + \frac{{ – 3}}{5} + \frac{2}{{21}} + \frac{{ – 10}}{{21}} + \frac{3}{{20}}\)
\( = \frac{1}{5} + \frac{8}{{21}} + \frac{2}{5} + \frac{{ – 3}}{5} + \frac{2}{{21}} + \frac{{ – 10}}{{21}} + \frac{3}{{20}}\)
\( = \frac{1}{5} + \frac{2}{5} + \frac{{ – 3}}{5} + \frac{8}{{21}} + \frac{2}{{21}} + \frac{{ – 10}}{{21}} + \frac{3}{{20}}\)
\( = \left( {\frac{1}{5} + \frac{2}{5} + \frac{{ – 3}}{5}} \right) + \left( {\frac{8}{{21}} + \frac{2}{{21}} + \frac{{ – 10}}{{21}}} \right) + \frac{3}{{20}}\)
\( = \frac{{1 + 2 + \left( { – 3} \right)}}{5} + \frac{{8 + 2 + \left( { – 10} \right)}}{{21}} + \frac{3}{{20}}\)
\( = \frac{0}{5} + \frac{0}{{21}} + \frac{3}{{20}}\)
\( = 0 + 0 + \frac{3}{{20}}\)
\( = \frac{3}{{20}}\)
c) \(\frac{5}{{11}}.\frac{5}{7} + \frac{5}{{11}}.\frac{2}{7} + \frac{6}{{11}}\)
\( = \left( {\frac{5}{{11}}.\frac{5}{7} + \frac{5}{{11}}.\frac{2}{7}} \right) + \frac{6}{{11}}\)
\( = \frac{5}{{11}}.\left( {\frac{5}{7} + \frac{2}{7}} \right) + \frac{6}{{11}}\)
\( = \frac{5}{{11}}.\frac{7}{7} + \frac{6}{{11}}\)
\( = \frac{5}{{11}}.1 + \frac{6}{{11}}\)
\( = \frac{5}{{11}} + \frac{6}{{11}}\)
\( = \frac{{5 + 6}}{{11}}\)
\( = \frac{{11}}{{11}}\)
= 1.
d) \(\left( { – \frac{5}{{24}} + 0,75 + \frac{7}{{12}}} \right):\left( { – 2\frac{1}{8}} \right)\)
\( = \left( { – \frac{5}{{24}} + \frac{3}{4} + \frac{7}{{12}}} \right):\left( { – \frac{{17}}{8}} \right)\)
\( = \left( { – \frac{5}{{24}} + \frac{{18}}{{24}} + \frac{{14}}{{24}}} \right):\left( { – \frac{{17}}{8}} \right)\)
\( = \frac{{ – 5 + 18 + 14}}{{24}}:\left( { – \frac{{17}}{8}} \right)\)
\( = \frac{9}{8}.\left( { – \frac{8}{{17}}} \right)\)
\( = \frac{{9.\left( { – 8} \right)}}{{8.17}}\)
\( = – \frac{9}{{17}}\)====== **** mời các bạn xem câu tiếp bên dưới **** =====
- Tìm x:
a) 23+13⋅x=56;
b) 53,2 : (x – 3,5) + 45,8 = 99
c) \(\left( {4\frac{1}{2} – 2x} \right).1\frac{4}{{61}} = 6\frac{1}{2}\);
d) \(\frac{1}{2}\,\, \cdot \,x\,\, + \,\,150\% \cdot \,\,x\,\, = \,\,\,2022\)
Câu hỏi:
Tìm x:
a) ;
b) 53,2 : (x – 3,5) + 45,8 = 99
c) \(\left( {4\frac{1}{2} – 2x} \right).1\frac{4}{{61}} = 6\frac{1}{2}\);
d) \(\frac{1}{2}\,\, \cdot \,x\,\, + \,\,150\% \cdot \,\,x\,\, = \,\,\,2022\)Trả lời:
Hướng dẫn giải:
a) \(\frac{2}{3}\,\, + \,\,\frac{1}{3} \cdot \,\,x\, = \,\frac{5}{6}\)
\({\mkern 1mu} {\mkern 1mu} \frac{1}{3}{\mkern 1mu} \cdot \,x{\mkern 1mu} \, = \,\,\frac{5}{6} – \frac{2}{3}{\mkern 1mu} \)
\({\mkern 1mu} \frac{1}{3}{\mkern 1mu} \, \cdot \,x{\mkern 1mu} \, = {\mkern 1mu} {\mkern 1mu} \frac{5}{6}{\mkern 1mu} \, – \,{\mkern 1mu} \frac{4}{6}\)
\({\mkern 1mu} \frac{1}{3} \cdot \,{\mkern 1mu} x{\mkern 1mu} \, = {\mkern 1mu} \,{\mkern 1mu} \frac{1}{6}{\mkern 1mu} \)
\(x{\mkern 1mu} {\mkern 1mu} = \,{\mkern 1mu} {\mkern 1mu} \frac{1}{6}\,{\mkern 1mu} {\mkern 1mu} :{\mkern 1mu} {\mkern 1mu} \,{\mkern 1mu} \frac{1}{3}\)
\(x{\mkern 1mu} \, = \,{\mkern 1mu} {\mkern 1mu} \frac{1}{6}\,{\mkern 1mu} \cdot \,\frac{3}{1}\)
\(x{\mkern 1mu} \, = \,{\mkern 1mu} \frac{1}{2}\).
Vậy \(x{\mkern 1mu} \, = \,{\mkern 1mu} \frac{1}{2}\).
b) 53,2 : (x – 3,5) + 45,8 = 99
53,2 : (x – 3,5) = 99 – 45,8
53,2 : (x – 3,5) = 53,2
x – 3,5 = 53,2 : 53,2
x – 3,5 = 1
x = 1 + 3,5
x = 4,5.
Vậy x = 4,5.
c) \(\left( {4\frac{1}{2} – 2x} \right).1\frac{4}{{61}} = 6\frac{1}{2}\).
\(\left( {\frac{9}{2} – 2x} \right).\frac{{65}}{{61}} = \frac{{13}}{2}\)
\(\frac{9}{2} – 2x = \frac{{13}}{2}:\frac{{65}}{{61}}\)
\(\frac{9}{2} – 2x = \frac{{13}}{2}.\frac{{61}}{{65}}\)
\(\frac{9}{2} – 2x = \frac{{13}}{2}.\frac{{61}}{{5.13}}\)
\(\frac{9}{2} – 2x = \frac{{61}}{{10}}\)
\(2x = \frac{9}{2} – \frac{{61}}{{10}}\)
\(2x = \frac{{45}}{{10}} – \frac{{61}}{{10}}\)
\(2x = \frac{{ – 16}}{{10}}\)
\(2x = \frac{{ – 8}}{5}\)
\(x = \frac{{ – 8}}{5}:2\)
\(x = \frac{{ – 8}}{5}.\frac{1}{2}\)
\(x = \frac{{ – 4}}{5}\)
Vậy \(x = \frac{{ – 4}}{5}\).
d) \(\frac{1}{2}\,\, \cdot \,x\,\, + \,\,150\% \cdot \,\,x\,\, = \,\,\,2022\)
\(\frac{1}{2}{\mkern 1mu} {\mkern 1mu} \cdot \,x{\mkern 1mu} \,{\mkern 1mu} + \,{\mkern 1mu} {\mkern 1mu} \frac{{150}}{{100}}\,\, \cdot \,{\mkern 1mu} x\,{\mkern 1mu} {\mkern 1mu} = {\mkern 1mu} {\mkern 1mu} {\mkern 1mu} 2022\)
\(\frac{1}{2}{\mkern 1mu} {\mkern 1mu} \cdot \,{\mkern 1mu} x{\mkern 1mu} {\mkern 1mu} \, + \,{\mkern 1mu} {\mkern 1mu} \frac{3}{2}{\mkern 1mu} \, \cdot {\mkern 1mu} {\mkern 1mu} \,x{\mkern 1mu} \,{\mkern 1mu} = \,{\mkern 1mu} {\mkern 1mu} {\mkern 1mu} 2022\)
\(x.\left( {\frac{1}{2} + \frac{3}{2}} \right) = 2022\)
\(x\,.{\mkern 1mu} \,\frac{4}{2}{\mkern 1mu} \, = {\mkern 1mu} \,2022\)
x . 2 = 2022
x = 2022 : 2
x = 1011
Vậy x = 1011.====== **** mời các bạn xem câu tiếp bên dưới **** =====
- Biểu đồ tranh sau đây biểu diễn số lượng buổi học bạn An sử dụng các phương tiện khác nhau để đi đến trường trong tháng 3.
(Mỗi ü ứng với 3 buổi học)
a) Có bao nhiêu buổi học bạn An đi xe máy cùng bố mẹ?
b) Lập bảng thống kê biểu diễn số lượng buổi học bạn An sử dụng các phương tiện đến trường?
c) Tính xác suất bạn An đến trường bằng xe bus (Làm tròn kết quả đến chữ số thập phân thứ nhất).
Câu hỏi:
Biểu đồ tranh sau đây biểu diễn số lượng buổi học bạn An sử dụng các phương tiện khác nhau để đi đến trường trong tháng 3.
(Mỗi ü ứng với 3 buổi học)
a) Có bao nhiêu buổi học bạn An đi xe máy cùng bố mẹ?
b) Lập bảng thống kê biểu diễn số lượng buổi học bạn An sử dụng các phương tiện đến trường?
c) Tính xác suất bạn An đến trường bằng xe bus (Làm tròn kết quả đến chữ số thập phân thứ nhất).Trả lời:
Hướng dẫn giải
a) Quan sát biểu đồ tranh ta thấy có bốn hình ü bạn An đi xe máy cùng bố mẹ.
Mà mỗi ü ứng với 3 buổi học.
Số buổi học An đến trường bằng xe máy cùng bố mẹ là: 4.3 = 12 (buổi học).
b) Số buổi học bạn An đi xe bus đến trường là: 3.3 = 9 (buổi học).
Số buổi học bạn An đi phương tiện khác đến trường là: 2.3 = 6 (buổi học).
Ta có bảng thống kê sau:Phương tiện
Xe bus
Xe máy (bố mẹ chở)
Phương tiện khác
Số lượng học sinh
9
12
6
c) Tổng số buổi học bạn An đi các phương tiện đến trường trong tháng 3 là:
9 + 12 + 6 = 27 (buổi học)
Xác suất bạn An đến trường bằng xe bus là: \(\frac{9}{{27}}.100\% = 33,33333..\) %
Làm tròn đến chữ số thập phân thứ nhất ta được kết quả là 33,3%.====== **** mời các bạn xem câu tiếp bên dưới **** =====
- a) Quan sát hình vẽ rồi điền vào bảng sau các góc có trong hình vẽ
Tên góc
(cách viết thông thường)
Kí hiệu
Tên đỉnh
Tên cạnh
Góc\(xOz\),
góc \({\rm{zOx}}\), góc \({O_1}\)
\(\widehat {xOz},\widehat {zOx},\widehat {{O_1}}\)
O
Ox, Oz
b) Cho đoạn thẳng CD = 8 cm. I là điểm nằm giữa C, D. Gọi M, N lần lượt là trung điểm các đoạn thẳng IC, ID. Tính độ dài đoạn thẳng MN.
Câu hỏi:
a) Quan sát hình vẽ rồi điền vào bảng sau các góc có trong hình vẽ
Tên góc
(cách viết thông thường)Kí hiệu
Tên đỉnh
Tên cạnh
Góc\(xOz\),
góc \({\rm{zOx}}\), góc \({O_1}\)\(\widehat {xOz},\widehat {zOx},\widehat {{O_1}}\)
O
Ox, Oz
b) Cho đoạn thẳng CD = 8 cm. I là điểm nằm giữa C, D. Gọi M, N lần lượt là trung điểm các đoạn thẳng IC, ID. Tính độ dài đoạn thẳng MN.
Trả lời:
Hướng dẫn giải
Tên góc (cách viết thông thường)
Kí hiệu
Tên đỉnh
Tên cạnh
Góc \(xOz\), góc \({\rm{zOx}}\), góc \({O_1}\)
\(\widehat {xOz},\widehat {zOx},\widehat {{O_1}}\)
O
Ox, Oz
Góc \(yOz\), góc \({\rm{zOy}}\), góc \({O_2}\)
\(\widehat {yOz},\widehat {zOy},\widehat {{O_2}}\)
O
Oy, Oz
Góc \(xOy\), góc \({\rm{yOx}}\), góc \(O\)
\(\widehat {xOy},\widehat {yOx},\widehat O\)
O
Ox, Oy
b)
Vì điểm M là trung điểm của IC nên ta có: \(IM = \frac{{IC}}{2}\)
Điểm \(N\)là trung điểm của ID nên: \(IN = \frac{{ID}}{2}\)
Mặt khác: I nằm giữa C và D nên ta có IC + ID = CD.
Do đó: \(MN = IM + IN = \frac{{IC + ID}}{2} = \frac{{CD}}{2} = \frac{8}{2} = 4\) cm.====== **** mời các bạn xem câu tiếp bên dưới **** =====
- Cho M = 1 + 2 + 22 + 23 + 24 + … 22022 + 22023. Chứng tỏ rằng M chia hết cho 3.
Câu hỏi:
Cho M = 1 + 2 + 22 + 23 + 24 + … 22022 + 22023. Chứng tỏ rằng M chia hết cho 3.
Trả lời:
Hướng dẫn giải.
M = 1 + 2 + 22 + 23 + 24 + … 22022 + 22023
M = (1 + 2) + (22 + 23) + (24 + 25) + … + (22022 + 22023)
M = (1 + 2) + 22.(1 + 2) + 24.(1 + 2) + … + 22022.(1 + 2)
M = (1 + 2).(1 + 22 + 24 + …+ 22022)
M = 3.(1 + 22 + 24 + …+ 22022) ⁝ 3
Vậy M chia hết cho 3.====== **** mời các bạn xem câu tiếp bên dưới **** =====