Câu hỏi:
Một cái phễu có dạng hình nón. Người ta đổ một lượng nước vào phễu sao cho chiều cao của lượng nước trong phễu bằng chiều cao của phễu. Hỏi nếu bịt kín miệng phễu rồi lộn ngược phễu lên thì chiều cao của mực nước xấp xỉ bằng bao nhiêu? Biết rằng chiều cao của phễu là 15 cm.
A. 0,5cm
B. 0,3cm
C. 0,188cm
Đáp án chính xác
D. 0,216cm
Trả lời:
Gọi lần lượt là bán kính đáy, chiều cao và thể tích khối nón được giới hạn bởi phần chứa nước lúc ban đầu; lần lượt là bán kính đáy, chiều cao và thể tích khối nón giới hạn bởi cái phễu; là chiều cao mực nước sau khi lộn ngược phễu. Theo tính chất tam giác đồng dạng ta có:
Sau khi lộn ngược phễu, tỉ số thể tích giữa phần không gian trong phễu không chứa nước và thể tích phễu bằng
Chọn đáp án C.
====== **** mời các bạn xem câu tiếp bên dưới **** =====
- Cho hàm số y=ax3+bx2+cx+d a , b , c , d∈ℝ có đồ thị như hình vẽ bên. Số điểm cực trị của hàm số đã cho là
Câu hỏi:
Cho hàm số có đồ thị như hình vẽ bên. Số điểm cực trị của hàm số đã cho là
A. 1
B. 2
Đáp án chính xác
C. 0
D. 3
Trả lời:
Dựa vào đồ thị trên, suy ra số điểm cực trị của hàm số là 2.
Chọn đáp án B====== **** mời các bạn xem câu tiếp bên dưới **** =====
- Cho hàm số y=fx liên tục trên R, có đạo hàm f’x=x3x−12x+2. Hỏi hàm số y=fx có bao nhiêu điểm cực trị?
Câu hỏi:
Cho hàm số liên tục trên R, có đạo hàm . Hỏi hàm số có bao nhiêu điểm cực trị?
A. 2
Đáp án chính xác
B. 0
C. 1
D. 3
Trả lời:
Hàm số có đạo hàm trên R và , trong đó là nghiệm kép.
Vậy hàm số có 2 điểm cực trị.
Chọn đáp án A====== **** mời các bạn xem câu tiếp bên dưới **** =====
- Trong không gian Oxyz, cho đường thẳng d:x2=y−31=z−2−3 và mặt phẳng P:x−y+2z−6=0. Đường thẳng nằm trong (P) cắt và vuông góc với d có phương trình là?
Câu hỏi:
Trong không gian Oxyz, cho đường thẳng và mặt phẳng . Đường thẳng nằm trong (P) cắt và vuông góc với d có phương trình là?
A.
Đáp án chính xác
B.
C.
D.
Trả lời:
, Gọi ,
Gọi là đường thẳng cần tìm.
Theo giả thiết
Và đường thẳng đi qua điểm I. Vậy
Chọn đáp án A====== **** mời các bạn xem câu tiếp bên dưới **** =====
- Cho khối chóp S.ABCD có đáy ABCD là hình vuông cạnh a, tam giác SAB cân tại S và nằm trong mặt phẳng vuông góc với đáy, SA=2a. Tính theo a thể tích khối chóp S.ABCD.
Câu hỏi:
Cho khối chóp S.ABCD có đáy ABCD là hình vuông cạnh a, tam giác SAB cân tại S và nằm trong mặt phẳng vuông góc với đáy, . Tính theo a thể tích khối chóp .
A.
B.
Đáp án chính xác
C.
D.
Trả lời:
Gọi H là trung điểm AB.
Theo đề, tam giác SAB cân tại S nên suy ra .
Mặt khác, tam giác SAB nằm trong mặt phẳng vuông góc với đáy nên suy ra .
Xét tam giác SHA vuông tại H.
Diện tích hình vuông là .
Vậy thể tích khối chóp là .
Chọn đáp án B====== **** mời các bạn xem câu tiếp bên dưới **** =====
- Từ một hộp đựng 5 quả cầu màu đỏ, 8 quả cầu màu xanh và 7 quả cầu màu trắng, chọn ngẫu nhiên 4 quả cầu. Tính xác suất để 4 quả cầu được chọn có đúng 2 quả cầu màu đỏ.
Câu hỏi:
Từ một hộp đựng 5 quả cầu màu đỏ, 8 quả cầu màu xanh và 7 quả cầu màu trắng, chọn ngẫu nhiên 4 quả cầu. Tính xác suất để 4 quả cầu được chọn có đúng 2 quả cầu màu đỏ.
A.
B.
Đáp án chính xác
C.
D.
Trả lời:
Chọn 4 quả cầu trong 20 quả cầu có .
Chọn 2 quả cầu đỏ trong 5 quả cầu có .
Chọn 2 quả cầu trong 15 quả cầu (gồm 8 quả cầu màu xanh và 7 quả cầu màu trắng) có .
Số cách chọn 4 quả cầu có đúng 2 quả cầu màu đỏ là .
Xác suất để 4 quả cầu được chọn có đúng 2 quả cầu màu đỏ là .
Chọn đáp án B====== **** mời các bạn xem câu tiếp bên dưới **** =====